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Abstract 

Gene fusions are observed in abnormal chromosomal rearrangements such as translocations 

in hematopoietic malignancies, especially leukemia subtypes. Hence, it is critical to obtain 

correct information about these rearrangements in order to apply proper treatment techniques. 

To identify abnormal molecular changes in patients with leukemia, we developed a multiplex 

reverse transcriptase polymerase chain reaction (MRT-PCR) protocol and investigated more 

than 140 gene fusions resulting from variations of 29 prevalent chromosomal rearrangements 

along with EVI1 and TLX1 oncogenic expression in the presence of optimized primers. The 

potential of the MRT-PCR method was approved by evaluating the available cell lines as 

positive control and confirmed by sequencing. Samples from 53 patients afflicted with 

hematopoiesis malignancies were analyzed. Results revealed at least one chromosomal 

rearrangement in 69% of acute myeloid leukemia subjects, 64% of acute lymphoblastic 

leukemia subjects and 81% of chronic myeloid leukemia subjects, as well as a subject with 

hypereosinophilic syndrome. Also, five novel fusion variants were detected. Results of this 

study also showed that, chromosomal rearrangements, both alone and in conjunction with 

other rearrangements, are involved in leukemogenesis. Moreover, it was found that EVI1 is a 

suitable hallmark for hematopoietic malignancies. 

 

Keywords: 

Leukemia; Gene Fusion; Chromosomal Translocation; EVI1 Gene; Multiplex RT-PCR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



3 

 

Introduction 

Abnormal chromosomal rearrangements (such as translocations, deletions, insertions and 

duplications) are among genomic alterations [1] that have different effects on proto-

oncogenes [2, 3]. Development of a double-strand break in DNA is a precursor for the 

formation of such rearrangement [1-3]. DNA double-strand breaks are generated in gene 

rearrangements of immunoglobulins and T-cell receptors which defect in postcleavage repair 

complexes promotes the generation of aberrant gene fusion [2, 3]. Gene fusions, for example 

t(15;17)(q22;q21) and inv(16)(p13.11;q22.1) can be developed in exonic or intronic 

breakpoints [4, 5]. In addition, a gene can have several different fusion partners, such as 

mixed lineage leukemia (MLL) gene on the 11q23 locus [6]. 

In the leukemia subtypes, chromosomal translocations are a major portion of detected 

molecular rearrangements, which involved in the leukemogenesis depending on the 

participant genes [2, 6]. In the other hand, in many cases, resistance to therapy or disease 

relapse is observed during treatment, that is sometimes associated with molecular 

rearrangements different from the initial detection [7-9]. Hence, an accurate diagnosis of 

causative agent and obtaining comprehensive information about the spread of the disease are 

of utmost importance for therapeutic measures. In the present study, we developed a MRT-

PCR method proposed by pallisgaard et al. in order to simultaneously analyze multiple 

common abnormal chromosomal changes related to various leukemia subtypes, the 

sensitivity and specificity of which has been well described previously [3, 10, 11]. 

 

 

 

Materials and method 

Patient samples and cell lines 

This study was conducted according to the recommendations by the Local Ethics Committee. 

For the study purpose, 54 patients with hematopoietic malignancies were introduced for 

sampling from the Department of Hematology and Oncology, the Shahid Qazi Hospital and 

Children's Hospital of Tabriz University of Medical Sciences. To carry out experiments, 5 

mL of peripheral blood were taken from each patient and stored in cryovials containing 

EDTA until use. 

In order to verify the performance of primers, as well as having an external positive control 

for PCR reactions, we made use of RNAs extracted from the patients with known 

chromosomal rearrangements and available cell lines (Table 1). The cell line NB-4, KG-1 

and RPMI8402 were obtained from the Pasteur Institute of Iran, the cell line K562, THP-1, 

REH and NALM-6 were obtained from the Stem Cell Research Center and the cell line HL-

60 was obtained from the Biotechnology Research Center of Tabriz University of Medical 

Sciences. All the cell lines were cultured in the RPMI-1640 medium supplemented with 10% 

fetal bovine serum and penicillin-streptomycin antibiotic. The medium for the cell line THP-

1 was supplemented with 50μM of 2-Mercaptoethanol [12]. 

 

RNA preparation  

Total RNA was extracted from the cell lines and patients sample using the QIAamp RNA 

Blood Mini Kit (Qiagen, USA) according to the manufacturer's instructions and stored at -
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80°C. Quantity and quality of RNA was assessed in two ways: first, two microliters of the 

final RNA mixture were assessed using an Nanodrop Epoch Microplate Spectrophotometer 

(BioTek, USA); second, a GAP-PCR protocol was used for examining the presence of DNA 

contamination in the RNA mixture. In this regard, the RT-PCR reaction was carried out using 

the REVERTA-L RT Reagents Kit (AmpliSens, Russia) based on random hexamer primers 

according to the manufacturer's instructions. Then, the GAP-PCR reaction mixture was 

performed with a final volume of 10μL including 2μL of the cDNA mixture, 6μL of Taq 

DNA Polymerase 1.1x Master Mix Red (Ampliqon, Denmark), 2μL of the primer mixture 

(5Pmol of each reverse and forward primer). The primers are shown in Table 2. The PCR 

program included an initial denaturation at 95ºC for 2 minutes, followed by 35 cycles of PCR 

amplification (annealing at 60ºC for 30 seconds, elongation at 72ºC for 30 seconds and 

denaturation at 95ºC for 30 seconds) and a final 5-minute extension at 72ºC. The PCR 

reaction amplifies a 219bp segment of the GAPDH cDNA. The presence of another band is 

indicative of DNA contamination (Figure 1C). Five microliters of each PCR product were 

electrophoresed on 1.5% agarose gel stained with the DNA Safe Stain (CinnaGen Co, Iran) at 

100V for 60 minutes. Negative controls without the cDNA sample were considered for all the 

GAP-PCR reactions. Finally, in case of any DNA contamination, DNAse digestion of the 

RNA mixture and following that re-purification of the total RNA was performed using the 

RNase-Free DNase Set and RNA Cleanup protocol (Qiagen, USA), respectively. 

 

Multiplex RT-PCR 

In order to perform the MRT-PCR reaction with high sensitivity, a series of specific reverse 

primers for a group of fusion transcripts and gene rearrangements were used [3]. All tubes 

and pipette tips treated in DEPC water. One microgram of total RNA was incubated at 65°C 

for 5 minutes with a mixture of specific primers (3pmol of each) and then reverse transcribed 

by incubation at 37°C for 45 minutes in a total volume of 25μL containing 20U RNase 

inhibitor (Invitrogen, UK), 1mM of each dNTP, 10mM dithiothreitol, 50mM Tris-HCl, pH 

8.3, 75mM KCl, 3mM MgCl2, and 200U Moloney murine leukemia virus (M-MLV) reverse 

transcriptase (Invitrogen, UK). After each MRT-PCR reaction, two microliters of the final 

product were withdrawn for quantification using a Nanodrop Epoch Microplate 

Spectrophotometer (BioTek, USA). 

 

Nested multiplex-PCR 

MRT-PCR amplification was carried out as 8 nested multiplex reactions in two steps by 

Eppendorf Mastercycler (Eppendorf, Germany), in the presence of two primer sets proposed 

by Pallisgaard et al. [3]. Each reaction mixture contained a pair of primers that amplifies a 

690bp segment of ubiquitously expressed transcription factor E2A as internal positive 

control. The first step of the Nested Multiplex-PCR (NM-PCR) performed as 8 parallel 

reactions in a total volume of 20μL containing 1µL of cDNA mixture, 8µL of ddH2O, 10µL 

of Taq DNA Polymerase 1.1x Master Mix Red (Ampliqon, Denmark), and 1µL of the primer 

mix (5pmol of each primer). The PCR program comprised of an initial denaturation at 95ºC 

for 15 minutes, followed by 25 cycles of PCR amplification (annealing at 58ºC for 30 

seconds, elongation at 72ºC for 1 minute, and denaturation at 95ºC for 30 seconds). Two 

microliters aliquots from the first 8 PCR products were transferred to the second 8 PCR 
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reaction mixtures with a total volume of 23μL containing 8µL of ddH2O, 12.5µL of Taq 

DNA Polymerase 1.1x Master Mix Red (Ampliqon, Denmark), and 2.5µL of the primer mix 

(5pmol of each primer). The PCR program comprised of an initial denaturation at 95ºC for 15 

minutes, followed by 20 cycles of PCR amplification (annealing at 58ºC for 30 seconds, 

elongation at 72ºC for 1 minute, and denaturation at 95ºC for 30 seconds), and finally by 10 

minutes of extension at 72ºC. Ten microliters of each PCR reaction electrophoresed in a 1.5% 

agarose gel stained with DNA Safe Stain (CinnaGen Co, Iran) for 60 minutes at 100V. 

Negative controls without cDNA template were included for all the PCR reactions. Also, the 

cDNA prepared from the HL-60 cell line as a normal control was used for all the PCR 

reactions. 

 

Evaluation of primers 

All the primers proposed for MRT-PCR and NM-PCR were evaluated using the OLIGO 

Primer Analysis Software Version 7.5 (Molecular Biology Insights Inc, USA) and by the 

published transcript sequence data in the ENSEMBL database. In this regard, the sequences 

of breakpoint associated with each fusion partner as donor (3’ site) and acceptor (5’ site) 

elements were placed next to each other, and PCR simulation was performed in the presence 

of primers specific to each fusion transcript. In most cases, the responses were appropriate, 

and only in two cases, the primers related to AFF1 and SET were changed (Table 2). 

Moreover, the primers performance was confirmed when the cell lines and subjects with 

known abnormality were examined (Figure 1A). Thus, the materials from cell line RPMI8402 

was used for act(3q26), act(10q24) and del(1p32), THP-1 for t(9;11)(p22;q23), K562 for 

t(9;22)(q34;q11) variant b3a2, REH for t(12;21)(p13;q22.3) and NB-4 for t(15;17)(q22;q21), 

as well as, positive control obtained from the subjects materials used for inv(16)(p13;q22.1), 

t(4;11)(q21;q23), t(6;11)(q27;q23), t(8;21)(q22;q22.3), t(9;22)(q34;q11) variant b2a2 and 

t(11;19)(q23;p13.1). 

 

Split-out PCR reaction 

Since each multiplex-PCR mixture consists of a combination of primer pairs for detection of 

several fusion transcripts, PCR products may have similar or closely similar sizes. Thus, 

when one or more fusion transcripts were detected in one or more PCR mixtures, multiplex 

PCR were separated into individual PCRs to accurately detect type of fusion transcript and 

also, to confirm the result of the NM-PCR (Figure 1B). In this regard, we performed the 

Split-Out PCR with individual primer pairs for each rearrangement belong to the second step 

of NM-PCR and 2µL from the first step product as a template. Moreover, the split-out PCR 

reaction was performed under the conditions similar to PCR program from the first step and 

reaction mixture from the second step of NM-PCR. Normal control of the NM-PCR product 

of the cell line HL-60, as well as the external positive control prepared from the cell lines and 

subjects with known abnormalities were considered for all the split-out reactions. 

 

Sequencing analysis 

Products from the split-out reaction were confirmed by sequencing of the amplified segment. 

In this regard, the DNA segments were purified from the agarose gel by the Keith Expin Gel 

SV Kit (GeneAll, Korea) according to the manufacturer's instructions. Purification product 
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delivered for automated standard sequencing by 3730xl DNA analyzer (Macrogen Inc, 

Korea). Results of the sequencing were evaluated using the chromatogram analysis software, 

Chromas 2.5.1 (Technelysium Pty Ltd, Australia). 

 

Results and discussion 

Of the 54 samples collected from the patients with hematopoietic malignancies, 53 subjects 

were investigated, including 26 patients with acute myeloid leukemia (AML), 14 patients 

with acute lymphoblastic leukemia (ALL), 11 patients with chronic myeloid leukemia 

(CML), one patient with lymphoblastic lymphoma and one patient with hypereosinophilic 

syndrome (HES) with active bone marrow. One patient with ALL was excluded due to very 

low count of white blood cells (Subject No. 51 in the remission status). The results in this 

study demonstrated at least one chromosomal rearrangement in 18/26 (69%) of the AML 

subjects, 9/14 (64%) of the ALL subjects and 9/11 (84%) of the CML subjects, and also an 

HES subject (Table 3). Multiple anomalies (MA) were significantly observed in majority of 

the positive subjects (Figure 2A), as a rearrangement was identified in conjunction with one 

or more various rearrangements rather than with different variants of a rearrangement. 

The abnormal rearrangements observed as MA include the following: t(16;21)(p11.2;q22.3), 

t(12;21)(p13;q22.3), t(1;19)(q23;p13), t(4;11)(q21;q23) and inappropriate activation of the 

TLX1 gene in the 10q24 locus (named as act(10q24) in this study) in the ALL subjects; 

t(9;11)(p22;q23), t(8;21)(q22;q22), t(10;11)(p12;q23), t(15;17)(q22;q21) and dup(11q23) in 

the AML subjects; t(9;22)(q34;q11) in the CML subjects; and dup(11q23) in the only HES 

subject. It is noteworthy that the t(4;11)(q21;q23), t(8;21)(q22;q22), t(15;17)(q22;q21) and 

t(9;22)(q34;q11) translocations were even individually detected. Moreover, 

inv(16)(p13.11;q22.1) was individually detected in the two AML-M4Eo subjects, and was 

not identified in form of MA in any subjects. However, the t(11;19)(q23;p13.1) and 

t(6;11)(q27;q23) translocations were detected as MA in the both groups of AML and ALL 

patients. Furthermore, aberrant activation of Ecotropic Viral Integration Site-1 (EVI1) proto-

oncogene in 3q26 locus (named as act(3q26) in this study) was observed as individual in the 

AML, ALL and CML subjects. Act(3q26) was also detected as MA in the AML, ALL, CML 

and HES subjects (Figure 2B). 

 

The results in this study revealed a number of novel fusion variants in the patient materials 

(Figure 3) in the form of MA: (a) subject No.3, the MRT-PCR analysis showed that MA 

included a novel variant of KMT2Aex11/AFDNex2 from t(6;11)(q27;q23) and two novel 

variants of KMT2Aex11/MLLT3ex9 and KMT2Aex11/MLLT3ex6 from t(9;11)(p22;q23), 

t(11;19)(q23;p13.1), t(15;17)(q22;q21) and act(3q26); (b) subject No.11, the MRT-PCR 

analysis showed that MA included the act(10q24) as a predicted isoform in NCBI Reference 

Sequence, and act(3q26); (c) subject No.41, the MRT-PCR analysis also demonstrated that 

MA consisted of t(11;19)(q23;p13.1) which was previously reported only in an AML subject 

with French-American-British (FAB) classification M5 [70] (a novel disease observation), 

t(4;11)(q21;q23) as KMT2Aex10/AFF1ex6 and two novel variants KMT2Aex11/AFF1ex5 and 

KMT2Aex11/AFF1ex6, as well as act(3q26). More details such as cell blood counting (CBC) 

test results were indexed in Table 4. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7 

 

Discussion 

In a review study on researches published from 1998 to 2016, based on similar methodology 

with the one used in the current study and/or case reports, 29 novel fusion variants with 

considerable prognostic and therapeutic impact were reported, which are detectable with the 

primers used in this study, even a three-way translocation between the genes PML, 

ADAMTS17 and RARA which has been recently reported in a patient with AML-M3 [76]. 

Summary of the data on the novel translocations and variants is given in Table 1. Hence, we 

developed the MRT-PCR method for the simultaneous detection of more than 140 gene 

fusion variants containing 29 abnormal chromosomal rearrangements. Moreover, a series of 

cell lines and novel disease observation are listed in Table 1. 

The greatest frequency of detection belonged to act(3q26) (29.36=69%) in the positive 

leukemia subjects, followed by the translocations t(4;11)(q21;q23), t(15;17)(q22;q21) and 

t(9;22)(q34;q11) in the ALL, AML and CML subjects, respectively. Anomalies such as 

del(1p32), t(X;11)(q13.1;q23), t(1;11)(q21;q23), t(1;11)(p32;q23), t(2;5)(p23;q35.1), 

t(3;5)(q25.1;q35.1), t(3;21)(q26.2;q22.3), t(5;12)(q33;p13), t(5;17)(q35.1;q22), 

t(6;9)(p22.3;q34.1), t(9;9)(q34.11;q34.13), t(9;12)(q34.1;p13), t(11;17)(q23.1;q21), 

t(11;17)(q23;q21), t(11;19)(q23;p13.3) and t(17;19)(q22;p13.3) were not observed in our 

study. This is while such anomalies could be detected in case the MRT-PCR method is used. 

This is because of proper performance of the primers in the PCR simulation and also, due to 

the fact that these anomalies were detected in previous studies with similar methodology 

[3,10,11]. This result could be attributed to low frequency of these anomalies. For example, 

the incidence of less than 1% for t(17;19)(q22;p13.3) and t(6;9)(p22.3;q34.1) was 

respectively reported in ALL and AML [89]. Also, the absence of these translocations in our 

results could be due to the small sample size. However, we had the positive control materials 

for t(3;21)(q26.2;q22.3), t(5;12)(q33;p13), t(9;12)(q34.1;p13) and t(11;19)(q23;p13.3), which 

were obtained from the subjects who were not enrolled in the study and were confirmed by 

the sequencing. In addition, t(9;22) could be detected in more than 95% of the CML subjects 

[62]; however, t(9;22) was not detected in two of the study CML subjects (the subjects 37 

and 50). These patients underwent targeted treatment by first-generation tyrosine kinase 

inhibitor and were in the remission status. Furthermore, many uncommon translocations 

related to immunoglobulin and T-cell receptor genes or tyrosine kinase and nucleoporin 

groups were not investigated in the MRT-PCR method. Thus, the presence of negative 

outcomes could be partly attributed to these anomalies. However, cytogenetic anomalies 

could not be ignored.  

Importantly, anomalies were in form of MA in 21/37 positive subjects (≈57%), which were 

detected in all the Present, Remission and Relapse situations (respectively in the subjects 16, 

28 and 48). This could be due to the presence of clones with several abnormalities or spread 

of several clones with different abnormalities compared to one another, which justifies the 

detection of the MA status in the new cases. As well as, detection of the rearrangements 

among the subjects in remission status could be attributed to the presence of residual 

leukemic cells (the subjects 10, 28 and 29). Also, the presence of cryptic clones with different 

anomalies that were not detected in the initial diagnosis and thus not received any treatment 

can be a cause for disease relapse (the subject 31). Such similar cases have been previously 

reported both in APL and CML patients [7,8]. Thus, the MA status can be attributed to a 
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cause for resistance to therapy or disease relapse, which commonly occurs during treatment. 

Moreover, several anomalies, including t(16;21)(p11.2;q22.3), t(12;21)(p13;q22.3), 

t(1;19)(q23;p13), act(10q24), t(9;11)(p22;q23), t(10;11)(p12;q23) and dup(11q23) were 

detected only in the MA status (Table 3). The question arises whether these anomalies are 

only involved in the aggressive form of the disease. This argument is very important for 

prognosis and minimal residual disease (MRD), and requires comprehensive genomic studies 

with greater sample sizes. 

The EVI1 gene is located downstream of the MDS1 gene and encodes a nuclear DNA-binding 

transcription factor with two zinc finger domains [90]. Previous studies have shown that 

act(3q26) is involved in the pathogenesis of ALL, AML and myelodysplastic syndrome 

(MDS) [91-93]. These reports are in line with the results obtained in our study, as act(3q26) 

was detected in the positive AML (61%) and ALL (89%) subjects. In addition, the results in 

the current study revealed act(3q26) in 67% of the positive CML subjects, as well as in one 

HES subject. 

In our study sample, there was no abnormality in the chromosome 3, especially the 

translocation t(3;21)(q26.2;q22.3) which involves the MDS1-EVI1 complex locus (MECOM). 

This suggests that act(3q26) can be developed independently of 3q26 disorders. In addition, 

act(3q26) was identified both in the presence and absence of several abnormalities including 

KMT2A rearrangements, t(12;21)(p13;q22.3), t(9;22)(q34;q11) , and occasions where it 

observed alone (Figure 2B). These results are in line with those of previous studies 

[14,92,94]. Hence, these results suggest further pathways for creation of the act(3q26). 

Aberrant activation of EVI1 was observed in patients with a wide range of 2 to 92 years of 

age (Figure 2C). As a result, the relationship between age and act(3q26) could not be further 

discussed. Elsewhere, EVI1 gene expression patterns were evaluated and observed to have a 

negative correlation with increasing age in AML patients [17]. 

This approved that increased or decreased EVI1 expression is respectively associated with 

inhibition and incitement of cell differentiation [90,93]. On the other hand, immature blast 

cells were detected in CBC results of subjects with act(3q26) ranging from 4 to 36%. 

Accordingly, detection of act(3q26) in peripheral blood samples could be due to the presence 

of immature blast cells. In a summary of the discussion on EVI1, all the results show that 

EVI1 is a suitable hallmark for hematopoietic malignancies and is considerable in terms of 

diagnostics.    

TLX1, also known as HOX11, encodes a DNA binding protein that has a homeodomain and is 

involved in cell growth and differentiation as a transcription regulator of genes [95]. 

According to previous studies, aberrant activation of TLX1 occurs during the translocations 

t(10;14)(q24;q11) and together with the variant t(7;10)(q35;q24) [18,96]. In this pathway, 

regulatory sequence of genes TRA/D (14q11) and TRB (7q35) is placed upstream of the TLX1 

and forces it to exhibit irregular expression, as an oncogenic approach to extend T-cell ALL 

described previously [97,98]. Act(10q24) was also detected in the subjects 1, 11 and 39. In 

the subject No.11, a TLX1 transcript with 36bp additional sequence from the 3’ end of TLX1 

intron 1 fused to the 5’ end of exon 2 was detected as a splice variant known as Transcript 

Variant X1 (Table 1, Figure 3). This transcript also contains a homeodomain that can have 

performance similar to that of other variants. Spread of T-cell ALL in this patient may be due 

to the presence of this transcript as a result of the mentioned translocations. On the other 
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hand, regardless of RPMI8402 that is a T-cell ALL cell line, act(10q24) was detected during 

the MRT-PCR analysis of the cell lines KG-1 (AML), K562 (CML-BC), NALM-6 (Pre B-

cell ALL) and REH (non B/T-cell ALL). This was a paradoxical result, since the 

translocations t(10;14)(q24;q11) and t(7;10)(q35;q24) have not been reported in these cell 

lines, and even in patients without acute T-cell leukemia. It is obvious that act(10q24) plays 

an important role in the development of leukemia; however, our results suggest that, in 

addition to the involvement of the aforementioned translocations, other mechanisms are also 

involved in creation of act(10q24). For example, it is shown that a complex containing PBX2 

regulatory element contributes to act(10q24) in cell line K562 [99]. 

In conclusion, it became clear that chromosomal rearrangements in most cases are involved 

as MA in the development and spread of hematopoietic malignancies and may be correlated 

with disease relapse and resistance to therapy. Therefore, diagnosis of MA status in patients 

with hematopoietic malignancy is of paramount importance and helps in selecting the 

appropriate treatment. Moreover, act(3q26) was clearly observed to have an influential role in 

the development of hematopoietic malignancies, and is not merely associated with a specific 

leukemic subtype or molecular chromosomal abnormality. It also seems that, in addition to 

amplification of gene expression by the translocation, many other pathways are involved in 

the development of act(10q26). 
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Figure caption 

 

Fig.1 Examples on results. (A) Electrophoresis of NM-PCR product of cell lines and two 

subject with MA status. R1 to R8; 8 parallel multiplex reactions. L; 50-1500bp DNA 

molecular weight marker (CinnaGen Co, Iran). A 690-bp segment of the ubiquitously 

expressed E2A mRNA is amplified in all the NM-PCR and Split-Out reaction mixtures as an 

PCR internal positive control. The band related to each rearrangement were indicated by 

numbers 1 to 6 near the band. In patient no.3, 1&2 indicate the tow rearrangements with 

closely similar sizes that separated by Split-Out reaction. (B) Split-Out result of THP-1 cell 

line. Multiplex mixture R5 was separated to five individuals PCR for t(4;11)(q21;q23) (R5A), 

t(11;19)(q23;p13.3) (R5B), t(9;11)(p22;q23) (R5C and R5D) and t(1;11)(q21;q23) (R5E). (C) 

checkup for DNA contamination in RNA mixtures by GAP-PCR protocol. An example of 

contamination was shown. 

 

Fig.2 (A) MA status were significantly detected in majority of the positive cases. (B) 

Relationship of act(3q26) with other rearrangements in positive subjects.  (C) Age-associated 

EVI1 activation in positive subjects. 

 

Fig.3 Nucleotide sequence of novel fusion transcript variant identified in the present study. 

A; transcript variant of TLX1 has been predicted in NCBI Reference Sequence as transcript 

variant X1 observed in case No.11. B and C; two novel fusion variant of t(4;11)(q21;q23) in 

case No.41. D, E and F; three novel fusion variant of t(6;11)(q27;q23) and t(9;11)(p22;q23) 

in case No.3. Breakpoint sequence related to the t(11;19)(q23;p13.1) has been previously 

reported [70], which observed in a novel disease in this study (Case No.41). 
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Table 1: Aberrant rearrangements investigated by MRT-PCR 

Chromosomal 

Rearrangement 

Genes 

Involved 

HGNC 

Gene Symbols 

ENSEMBL 

Transcript ID 
Gene Fusion Region* 

PCR 

Mix 

No. ‡ 

PCR 

Product 

Size ¥ 

Positive Control‴ Observations‴ 

act(3q26.2) EVI1(3q26.2) 

 

MECOM ENST00000464456 

ENST00000494292 

 R7C 

R7C 

262 

289 

RPMI840214¶ 

RPMI840214¶ 

MDS15,AML16,ALL17,CML18 

MDS15,AML16,ALL17,CML18 

act(10q24) HOX11(10q24) TLX1 ENST00000370196 

XM_011539744.2† 

 

 

R4D 

R4D 

212 

248 

RPMI840219¶ T-ALL20 

T-ALL§ 

del(1p32) SIL(1p32) 

TAL1(1p32) 

STIL 

TAL1 

ENST00000360380 

ENST00000294339 

SILex1/TAL1ex1b R3D 184 RPMI840220,21¶ T-ALL20,21 

dup(11q23) MLL(11q23) 

MLL(11q23) 

KMT2A 

KMT2A 

ENST00000534358 

ENST00000534358 

MLLex7/MLLex2 

MLLex8/MLLex2 

MLLex9/MLLex2 

MLLex10/MLLex2 

MLLex11/MLLex2 

MLLex11[nt51]/MLLex2 

R2F 

R2F 

R2F 

R2F 

R2F 

R2F 

184 

258 

145(390) 

259(504) 

406(651) 

310(555) 

 

 

PC 

 

 

 

ALL3 

AML22,ALL23 

AML22 

AML22 

AML22 

AML22 

inv(16)(p13;q22.1) CBF(16q22.1) 

MYH11(16p13)  

CBFβ 

MYH11 

ENST00000290858 

ENST00000616439 

CBFex5/MYH11ex34 (A) 

CBFex5/MYH11ex33 (B) 

CBFex5/MYH11ex32 (C) 

CBFex5/MYH11ex30 (D) 

CBFex5/MYH11ex29 (E) 

CBFex4/MYH11ex34 (F) 

CBFex4/MYH11ex30 (G) 

CBFex4/MYH11ex29 (H) 

CBFex5/MYH11ex32 (I)# 

CBFex5/MYH11ex33[nt88]+ins7# 

R1A 

R1A 

R1A 

R1B 

R1B 

R1A 

R1B 

R1B 

R1A 

R1A 

270 

483 

663 

337 

544 

174 

241 

348 

591 

402 

PC,ME-124 AML24 

AML24 

AML24 

AML24 

AML24 

AML24 

AML4 

AML4 

AML25 

AML26 

t(X;11)(q13.1;q23) MLL(11q23) 

AFX(Xq13.1) 

KMT2A 

FOXO4 

ENST00000534358 

ENST00000374259 

 

 

MLLex8/AFXex1 

MLLex9/AFXex1 

MLLex10/AFXex1 

MLLex11/AFXex1 

R1C 

R1C 

R1C 

R1C 

344 

231(476) 

345(590) 

492(737) 

 

 

Karpas-4528,29 

 

P 

P 

ALL28,29 

P  

t(1;11)(q21;q23) MLL(11q23) 

AF1q(1q21) 

KMT2A 

MLLT11 

ENST00000534358 

ENST00000368921 

 

MLLex8/AF1qex2 

MLLex9/AF1qex2# 

MLLex10/AF1qex2 

MLLex11/AF1qex2 

MLLex9[nt115]/AF1qex2+ins27# 

R5E 

R5E 

R5E 

R5E 

R5E 

400 

287(532) 

401(646) 

548(793) 

542 

 AMMOL30 

AML99 

P 

P 

AML31 

t(1;11)(p32;q23) MLL(11q23) 

AF1p(1p32) 

KMT2A 

EPS15 

ENST00000534358 

ENST00000371733 

 

MLLex8/AF1pex2 

MLLex9/AF1pex2 

MLLex10/AF1pex2 

MLLex11/AF1pex2 

R2A 

R2A 

R2A 

R2A 

301 

188(433) 

302(547) 

449(694) 

TZ-133# ALL32,AMOL33# 

P 

P 

P 

t(1;19)(q23;p13) E2A(19p13) 

PBX1(1q23) 

TCF3 

PBX1 

ENST00000262965 

ENST00000420696 

E2Aex16/PBX1ex3 (I) 

E2Aex16/PBX1ex3+ins27 (Ia) 

R3A 

R3A 

376 

403 

PC,69734,35,SUP-B2734# ALL35 

ALL35 

t(2;5)(p23;q35.1) NPM(5q35.1) 

ALK(2p23) 

NPM1 

ALK 

ENST00000296930 

ENST00000389048 

NPMex4/ALKex20 R8D 296 SUP-M236,L8237 ALCL36,T/B-cell 

lymphomas38 

t(3;5)(q25.1;q35.1) NPM(5q35.1) 

MLF1(3q25.1) 

NPM1 

MLF1 

ENST00000296930 

ENST00000619577 

NPMex6/MLF1ex2 R8F 276  MDS39, AML39 

t(3;21)(q26.2;q22.3) AML1(21q22.3) 

MDS1(3q26.2) 

RUNX1 

MECOM 

ENST00000300305 

ENST00000494292 

AML1ex5/MDS1ex2 

AML1ex6/MDS1ex2 

R4B 

R4B 

446 

638 

SKH140 

PCO 

CML-BC40, AML41, MDS42 

CML-BC40, AML41, MDS42 

t(4;11)(q21;q23) MLL(11q23) 

AF4(4q21) 

KMT2A 

AFF 
ENST00000534358 

ENST00000307808 

MLLex8/AF4ex4 

MLLex9/AF4ex4 

MLLex10/AF4ex4 

MLLex11/AF4ex4# 

MLLex8/AF4ex5 

MLLex9/AF4ex5 

MLLex10/AF4ex5 

MLLex11/AF4ex5§ 

MLLex8/AF4ex6# 

MLLex9/AF4ex6 

MLLex10/AF4ex6 

MLLex11/AF4ex6§ 

R5A 

R5A 

R5A 

R5A 

R5A 

R5A 

R5A 

R5A 

R5A 

R5A 

R5A 

R5A 

317 

204(449) 

318(563) 

465(710) 

272 

159(404) 

273(518) 

420(665) 

185 

72(317) 

186(431) 

333(578)  

KOCL4543# 

RS4; 1143 

 

 

MV-4-1144 

 

 

 

 

 

KOCL-6943# 

PC 

ALL43,44 

ALL43,44 

ALL44,46 

ALL45 

ALL44,46 

ALL43,44,46 

ALL43,46 

ALL 

ALL47 

ALL46 

ALL43,44,46 

ALL  

t(5;12)(q33;p13) TEL(12p13) 

PDGFR(5q33) 

ETV6 

PDGFRβ 

ENST00000396373 

ENST00000261799 

TELex4/PDGFRex9# 

TELex4/PDGFRex11 

R6D 

R6D 

657 

321 

 

PCO 

CMML48 

CMML48,49, MDS49 

t(5;17)(q35.1;q22) NPM(5q35.1) 

RARA(17q22) 

NPM1 

RARα 

ENST00000296930 

ENST00000394081 

NPMex4/RARAex2 

NPMex5+129bp/RARAex2 

R8E 

R8E 

165 

294 

 APL50 

APL51 

t(6;9)(p22.3;q34.1) DEK(6p22.3) 

CAN(9q34.1) 

DEK 

NUP214 

ENST00000397239 

ENST00000359428 

DEKex9/CANex18 R7A 320 FKH-152# AML52 

t(6;11)(q27;q23) MLL(11q23) 

AF6(6q27) 

KMT2A 

AFDN 

ENST00000534358 

ENST00000400822 

MLLex7/AF6ex2# 

MLLex8/AF6ex2 

MLLex9/AF6ex2 

MLLex10/AF6ex2 

MLLex11/AF6ex2§ 

R1D 

R1D 

R1D 

R1D 

R1D 

234 

308 

195(440) 

309(594) 

456(741) 

SHI-153# 

PC,ML-23SHI-153,54# 

CTS55# 

 

 

AML53 

AML23, ALL3 

AML23 

P 

AML 

t(8;21)(q22;q22.3) AML1(21q22.3) 

ETO(8q22) 

RUNX1 

RUNX1T1 

ENST00000300305 

ENST00000523629 

AML1ex5/ETOex3 R4A 353 PC,Kasumi-156,SKNO-157# AML56 

t(9;9)(q34.11;q34.13) SET(q34.11) 

CAN(q34.13) 

SET 

NUP214 

ENST00000372692 

ENST00000359428 

SETex7/CANex17# 

SETex7/CANex18 

R7B 

R7B 

552 

393 

 

MEGAL58#,LOUCY58# 

T-ALL58 

AUL59,AML60#,T-ALL61# 

t(9;11)(p22;q23) MLL(11q23) 

AF9(9p22) 

KMT2A 

MLLT3 

ENST00000534358 

ENST00000380338 

MLLex8/AF9ex6 

MLLex9/AF9ex6 

MLLex10/AF9ex6 

MLLex11/AF9ex6§ 

MLLex7/AF9ex7# 

MLLex8/AF9ex9 

MLLex9/AF9ex9 

MLLex10/AF9ex9 

MLLex11/AF9ex9§ 

MLLex8/AF9ex10# 

R5C 

R5C 

R5C 

R5C 

R5C 

R5D 

R5D 

R5D 

R5D 

R5D 

321 

208(453) 

322(567) 

469(714) 

171(521) 

365 

252(497) 

366(611) 

513(758) 

293 

THP-162¶ ,UG363# 

Mono-Mac-63,KOPB-2643# 

Mono-Mac-63,KOPB-2643# 

 

 

 

 

 

AML43 

AML64 

AML64 

AML 

AML65 

AML66 

P 

P 

AML 

AML67 
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t(9;12)(q34.1;p13) TEL(12p13) 

ABL(9q34.1) 

ETV6 

ABL1 

ENST00000396373 

ENST00000318560 

TELex4/ABLex2 

 

TELex5/ABLex2# 

R6C 

 

R6D 

366 

 

912 

ALL-VG68#, PCO 

 

ALL-VG68# 

ALL69,70,CML71#,T-cell 

lmphoma72# 

ALL70,AML70,CML71,T-cell 

lymphoma72 

t(9;22)(q34;q11) BCR(22q11) 

ABL(9q34) 

BCR 

ABL1 

ENST00000305877 

ENST00000318560 

BCRex1/ABLex2 (e1a2) 

BCRex1/ABLex3 (e1a3) 

BCRex13/ABLex2 (b2a2) 

BCRex13/ABLex3 (b2a3) 

BCRex14/ABLex2 (b3a2) 

BCRex14/ABLex3 (b3a3) 

R6A 

R6A 

R6B 

R6B 

R6B 

R6B 

320 

146 

397 

223 

472 

298 

NALM-2973# 

 

PC,BV-17373#,MOLM-173# 

 

K56273¶ 

ALL74 

P 

CML74 

P 

CML74 

P 

t(10;11)(p12;q23) MLL(11q23) 

AF10(10p12) 

KMT2A 

MLLT10 

ENST00000534358 

ENST00000307729 

MLLex7/AF10ex16 

MLLex8/AF10ex15 

MLLex9/AF10ex15 

MLLex10/AF10ex15 

MLLex11/AF10ex15 

MLLex7/AF10ex14 

MLLex8/AF10ex10 

MLLex9/AF10ex10 

MLLex10/AF10ex10 

MLLex11/AF10ex10 

MLLex8/AF10ex9 

MLLex9/AF10ex9 

MLLex10/AF10ex9 

MLLex11/AF10ex9 

MLLex8/AF10ex6 

MLLex9/AF10ex6 

MLLex10/AF10ex6 

MLLex11/AF10ex6 

R2C 

R2C 

R2C 

R2C 

R2C 

R2C 

R2D 

R2D 

R2D 

R2D 

R2D 

R2D 

R2D 

R2D 

R2E 

R2E 

R2E 

R2E 

202 

388 

275(520) 

389(634) 

536(781) 

493 

268 

155(400) 

269(514) 

416(661) 

364 

251(496) 

365(610) 

512(757) 

267 

154(399) 

268(513) 

415(660) 

PC AML75,76 

AML75,76 

P 

P 

P 

AML3 

AML75,76 

AML76 

P 

P 

AML76 

AML76 

P 

P 

AML76 

P 

P 

P 

t(11;17)(q23;q21) MLL(11q23) 

AF17(17q21) 

KMT2A 

MLLT6 

ENST00000534358 

ENST00000621332 

MLLex7/AF17ex11 

MLLex8/AF17ex7-del615# 

MLLex8/AF17ex8-del615# 

MLLex9[nt74]/AF17ex11[nt94]# 

R2B 

R2B 

R2B 

R2B 

281 

839 

671 

335 

 AML77 

AML78 

AML78 

AML78 

t(11;17)(q23.1;q21) PLZF(11q23.1) 

RARA(17q21) 

ZBTB16 

RARα 

ENST00000335953 

ENST00000394081 

PLZFex3/RARAex2 

PLZFex4/RARAex2 

R8A 

R8A 

315 

402 

 APL79 

APL79 

t(11;19)(q23;p13.1) MLL(11q23) 

ELL(19p13.1) 

KMT2A 

ELL 

ENST00000534358 

ENST00000262809 

MLLex8/ELLex2 

MLLex9/ELLex2 

MLLex10/ELLex2 

MLLex11/ELLex2 

MLLex8/ELLex2+ins120 

MLLex9/ELLex2+ins120 

MLLex10/ELLex2+ins120 

MLLex11/ELLex2+ins120 

MLLex9/ELLex3# 

R1E 

R1E 

R1E 

R1E 

R1E 

R1E 

R1E 

R1E 

R1E 

330 

217(462) 

301(576) 

448(723) 

450 

337(582) 

451(696) 

598(845) 

169 

 

PC 

 

 

 

 

 

 

 

P 

AML80,ALL§ 

P 

P 

P 

AML80 

AML80 

P 

AML81 

t(11;19)(q23;p13.3) MLL(11q23) 

ENL(19p13.3) 

KMT2A 

MLLT1 

ENST00000534358 

ENST00000252674 

MLLex8/ENLex2 

MLLex9/ENLex2 

MLLex10/ENLex2 

MLLex11/ENLex2 

R5B 

R5B 

R5B 

R5B 

186 

73(318) 

187(432) 

334(579) 

PCO 

KOCL-4443,KOCL-5143# 

KOCL-4443,KOCL-5143# 

 

ALL46 

ALL46 

ALL46 

P 

t(12;21)(p13;q22.3) TEL(12p13) 

AML1(21q22.3) 

ETV6 

RUNX1 

ENST00000396373 

ENST00000300305 

TELex5/AML1ex3 

TELex5/AML1ex2 

TELex5+ins33/AML1ex2# 

R3C 

R3C 

R3C 

298 

337 

370 

 

REH82¶ 

ALL83 

ALL83 

ALL27 

t(15;17)(q22;q21) PML(15q22) 

RARA(17q21) 

PML 

RARα 

ENST00000268058 

ENST00000394081 

PMLex7+ins110/RARAex2[nt46]# 

PMLex7/ADAMTS17ex15/RARAex2# 

PMLex6/RARAex2 (BCR1) 

PMLex6+ins29/RARAex2 (BCR2) 

PMLex6+ins25/RARAex2 (BCR2) 

PMLex6[nt205]/RARAex2 (BCR2) 

PMLex6[nt113]/RARAex2 (BCR2)# 

PMLex6[nt101]/RARAex2 (BCR2) 

PMLex5/RARAex2# 

PMLex4/RARAex2 

PMLex4/ins58/RARAex2# 

PMLex4+ins9/RARAex1[nt413]# 

PMLex3-del42-ex4/RARAex2# 

PMLex3/RARAex2 (BCR3) 

PMLex3-del54/RARAex2 

R8B 

R8B 

R8B 

R8B 

R8B 

R8B 

R8B 

R8B 

R8B 

R8C 

R8C 

R8C 

R8C 

R8C 

R8C 

544 

601 

427 

456 

392 

373 

280 

269 

168 

464 

522 

549 

422 

393 

339 

 

 

NB-486,91¶ 

 

 

 

 

 

 

NB-486¶ 

 

 

 

 

APL84 

APL85 

APL86,5 

APL5 

APL5 

APL5 

APL87 

APL5 

APL88 

APL86 

APL89 

APL90 

APL87 

APL86 

APL5 

t(16;21)(p11.2;q22.3) TLS(16p11.2) 

ERG(21q22.3) 

FUS 

ERG 

ENST00000254108 

ENST00000417133 

TLSex8/ERGex10# 

TLSex7/ERGex9# 

TLSex6+44bp+ex7/ERGex12 (a) 

TLSex7/ERGex12 (b) 

TLSex6/ERGex12 (c) 

TLSex6/ERGex10 (d) 

TLSex6/ERGex9 (e) 

R4C 

R4C 

R4C 

R4C 

R4C 

R4C 

R4C 

412 

448 

318 

274 

239 

344 

413 

 

 

UTP-L1294 

UTP-L1294,JIH-495# 

UTP-L1294 

PC 

 

AML92 

ALL93 

AML94 

AML94 

AML94,ALL94 

ALL3 

ALL3 

t(17;19)(q22;p13.3) E2A(19p13.3) 

HLF(17q22) 

TCF3 

HLF 

ENST00000262965 

ENST00000226067 

E2Aex16/HLFex4+ins137# 

E2Aex16/HLFex4+ins90# 

E2Aex16/ins59/HLFex4 (I) 

E2Aex16/HLFex4 (I) 

E2Aex15/HLFex4 (II) 

E2Aex14/HLFex4# 

R3B 

R3B 

R3B 

R3B 

R3B 

R3B 

468 

421 

390 

331 

207 

48 

YCUB-296# 

YCUB-296# 

 

HAL-0197 

YCUB-296# 

 

ALL96 

ALL96 

ALL97 

ALL97 

ALL97 

ALL98 

Abbreviations: HGNC, HUGO Gene Nomenclature Committee; No, number; act, activation; del, deletion; dup, duplication; inv, inversion; t, 

translocation; p, short chromosome arm; q, long chromosome arm; ex, exon; ins, insertion; nt, nucleotid; bp, base pair; BCR1/2/3, breakpoint 

cluster region 1/2/3; PC, positive control obtained from patient material; PCO, positive control obtained from patients who are not member 

of this study; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; CML, chronic myeloid 



leukemia; BC, blast crisis; AUL, acute undifferentiated leukemia; CMML, chronic myelomonocytic leukemia; MDS, myelodysplastic syndrome; 

AMOL, acute monocytic leukemia; AMMOL, acute myelomonocytic leukemia; P, possible fusion variant in terms of theoretical.  

Symbols: *Letters and numbers in brackets and parentheses respectively indicates alternative breakpoints and name of fusion variants. ‡R1 to 

R8 indicate multiplex reaction number, and A to F indicate split-out reaction with individual primer pairs. ¥Number in the parentheses suggested 

the size of PCR product when co-amplified from the MLL exon 7 primer, just for MLLex7/AF9ex7 is related to the co-amplification from the 

AF9 exon 11 primer. ‴Related references shown on upper right corner. †This variant of HOX11 transcript has been predicted in NCBI Reference 

Sequence as transcript variant X1 and not described on ENSEMBL. #Novel fusion variant, cell line and observation in other study. ¶Available 

cell lines employed as positive control. §Novel fusion variant and disease observation in this study. 

 



Table 2: Primers used in the GAP-PCR and NM-PCR 

Group Gene 
ENSEMBL Transcript 

ID 
Forward Primer (5’>3’) Reverse Primer (5’>3’) 

PCR 

Mix No. 

Product 

Length 

Tm 

(⁰C) 

A        

 GAPDH ENST00000229239.9 CATGGCCTCCAAGGAGTAAG GGTTGAGCACAGGGTACTTTA - 219bp 57 

B        

 AF4 ENST00000307808 - GTTTTTGGTTTTGGGTTACAGAACT R5A - 58 

 SET ENST00000372692 CACCGAAATCAAATGGAAATCTG - R7B - 56 

Group A: primer pair used for GAP-PCR protocol. Forward primer annealed to the exon9 and reverse primer placed on 3’ UTR of GAPDH 

transcript. 

Group B: optimized primers for NM-PCR. Reverse primer of AF4 is for second step of NM-PCR primer set. Forward primer of SET is related 

to first step of NM-PCR primer set. Other primers were used as provided sequence in the past [3]. 

Table 2



Table 3: Preanalytic features and MRT-PCR results of 53 subjects with hematological malignancies 

Group 
Case 

No.* 
Status Sex 

Age 

(year) 
Diagnosis 

IBC 

(%) 
Abnormality 

Related Gene or 

Fusion Variant 
Additional details 

A          

 1* present M 40 T-ALL 11 act(10q24) 

act(3q26) 

Activation of HOX11 

Activation of EVI1 

New case 

 7* present F 32 Pre-B-ALL 18 t(1;19)(q23;p13) 
act(3q26) 

E2Aex16/PBX1ex3 (I) 
Activation of EVI1 

New case 

 11* present F 12 ALL 21 act(10q24) 

act(3q26) 

Activation of HOX11 

Activation of EVI1 

New case 

 20 present M 26 Pre B-ALL 4 act(3q26) Activation of EVI1 New case 

 39* present M 6 T-ALL 17 t(16;21)(p11.2;q22.3) 
act(10q24) 

act(3q26) 

TLSex6/ERGex10 (d) 
Activation of HOX11 

Activation of EVI1 

New case 

 41* present M 7 ALL 24 t(11;19)(q23;p13.1) 
t(4;11)(q21;q23) 

t(4;11)(q21;q23) 

t(4;11)(q21;q23) 
act(3q26) 

MLLex9/ELLex2 
MLLex10/AF4ex6 

MLLex11/AF4ex6 

MLLex11/AF4ex5 
Activation of EVI1 

New case 

 43 present M 4 Pre B-ALL - t(4;11)(q21;q23) MLLex11/AF4ex6 New case 

 47* present M 5 Pre B-ALL 13 t(6;11)(q27;q23) 

t(12;21)(p13;q22.3) 

act(3q26) 

MLLex8/AF6ex2 

TELex5/AML1ex2 

Activation of EVI1 

New case 

 48* present F 2 Pre B-ALL 12 t(12;21)(p13;q22.3) 

t(4;11)(q21;q23) 

act(3q26) 

TELex5/AML1ex3 

MLLex11/AF4ex4 

Activation of EVI1 

New case 

 6 remission M 4 Pre B-ALL - Negative  The initial diagnosis was performed by 

Immunophenotyping. During sampling, 

patient was received chemotherapy. 

 12 present M 23 T-ALL - Negative  New case 

 14 present F 15 ALL - Negative  New case 

 44 present F 4 Pre B-ALL - Negative  New case 

 45 present F 8 Pre B-ALL - Negative  New case 

 51 remission M 5 Pre B-ALL - ND  The initial diagnosis was performed by 
Immunophenotyping. During sampling, 

patient was received chemotherapy. 

B          

 3* present F 16 AML 31 t(6;11)(q27;q23) 
t(11;19)(q23;p13.1) 

t(9;11)(p22;q23) 

t(9;11)(p22;q23) 
act(3q26) 

t(15;17)(q22;q21) 

MLLex11/AF6ex2 
MLLex9/ELLex2 

MLLex11/AF9ex9 

MLLex11/AF9ex6 
Activation of EVI1 

PMLex3/RARAex2 

New case 

 5* present M 56 AML-M1 6 dup(11q23) 

act(3q26) 

MLLex9/MLLex2 

Activation of EVI1 

New case 

 8 present M 43 AML with 

Pancytopenia 

7 act(3q26) Activation of EVI1 New case 

 9 present M 70 AML-M5 10 act(3q26) Activation of EVI1 New case 

 10 remission M 30 AML-M3 7 act(3q26) Activation of EVI1 The initial analysis showed AML-M3 
with t(15;17)(q22;q21) and treatment 

was started by ATRA. Partial remission 

was achieved after 6 months. 

 18* present M 24 AML-M3 35 act(3q26) 

t(15;17)(q22;q21) 

Activation of EVI1 

PMLex3/RARAex2 

New case 

 19 present M 41 AML 6 act(3q26) Activation of EVI1 New case 

 21 present M 19 AML-M2 with 
Pancytopenia 

- t(8;21)(q22;q22) AML1ex5/ETOex3 New case 

 22* present M 45 AML-M3 18 act(3q26) 

t(15;17)(q22;q21) 

Activation of EVI1 

PMLex3/RARAex2 

New case 

 24 present M 29 AML-M4Eo - inv(16)(p13.11;q22.1) 
inv(16)(p13.11;q22.1) 

CBFex5/MYH11ex34 (A) 
CBFex5/MYH11ex33+ins7 

New case 

 25* present M 18 AML-M3 with 

Pancytopenia 

- t(10;11)(p12;q23) 

t(15;17)(q22;q21) 

MLLex7/AF10ex16 

PMLex6/RARAex2 (BCR1) 

New case 

 26* present M 35 AML-M3 36 t(9;11)(p22;q23) 
act(3q26) 

t(15;17)(q22;q21) 

MLLex8/AF9ex10 
Activation of EVI1 

PMLex6+ins25/RARAex2 

New case 

 27 present M 28 AML-M4Eo - inv(16)(p13.11;q22.1) CBFex5/MYH11ex34 (A) New case 

 28* remission M 32 AML-M3 7 act(3q26) 
t(15;17)(q22;q21) 

Activation of EVI1 
PMLex6[nt205]/RARAex2 

The initial analysis showed AML-M3 
with t(15;17)(q22;q21) and treatment 

was started by ATRA. Partial remission 

was achieved after 8 months.  

 29 remission M 29 AML-M3 15 act(3q26) Activation of EVI1 The initial analysis showed AML-M3 
with t(15;17)(q22;q21) and treatment 

Table 3



was started by ATRA. Partial Remission 

was achieved after 6 months. 

 30* present F 32 AML-M3 - t(8;21)(q22;q22) 
t(15;17)(q22;q21) 

AML1ex5/ETOex3 
PMLex6/RARAex2 

New case 

 31 relapse M 35 AML-M2 - t(8;21)(q22;q22) AML1ex5/ETOex3 The initial analysis showed AML-M3 

with t(15;17)(q22;q21) and treatment 
was started by ATRA. Relapsed after 4 

months with t(8;21)(q22;q22) and 

diagnosed as AML-M2. 

 35 present M 15 AML-M3 - t(15;17)(q22;q21) PMLex3/RARAex2 New case 

 4 present M 29 AML - Negative  New case 

 13 present M 44 AML - Negative  New case 

 15 remission M 45 AML - Negative  The initial diagnosis was performed by 

Immunophenotyping. During sampling, 
patient was received chemotherapy. 

 17 relapse F 21 AML-M4 - Negative  The initial diagnosis was performed by 

Immunophenotyping. Partial remission 

was achieved after 6 months. Then, 
Relapsed after 2 months. 

 32 remission M 68 AML-M3 - Negative  The initial analysis showed AML-M3 

with t(15;17)(q22;q21) and treatment 
was started by ATRA. Complete 

remission was achieved after 7 months. 

 36 present M 79 AML - Negative  New case 

 38 remission M 35 AML-M3 - Negative  The initial analysis showed AML-M3 
with t(15;17)(q22;q21) and treatment 

was started by ATRA. Complete 

remission was achieved after 5 months. 

 46 remission M 37 AML-M3 - Negative  The initial analysis showed AML-M3 

with t(15;17)(q22;q21) and treatment 

was started by ATRA. Complete 
remission was achieved after 5 months. 

C          

 2* present F 43 CML 11 t(9;22)(q34;q11) 

act(3q26) 

BCRex13/ABLex2 

Activation of EVI1 

New case 

 16* relapse F 41 CML 29 t(9;22)(q34;q11) 
act(3q26) 

BCRex13/ABLex2 
Activation of EVI1 

The initial analysis showed CML with 
t(9;22)(q34;q11). Treatment was started 

by Imatinib. Relapsed after 7 months. 

Without effective point mutation in 
ABL1 kinase domain. 

 23 present M 53 CML-BC - t(9;22)(q34;q11) BCRex13/ABLex2 New case 

 33 relapse M 34 CML - t(9;22)(q34;q11) BCRex14/ABLex2 The initial analysis showed CML with 

t(9;22)(q34;q11). Treatment was started 
by Imatinib. Relapsed after 6 months. A 

point mutation related to T315I amino 

acid change was detected in ABL1 
kinase domain. 

 40* present F 36 CML 10 t(9;22)(q34;q11) 

act(3q26) 

BCRex13/ABLex2 

Activation of EVI1 

New case 

 42* present F 26 Pro-CML 6 t(9;22)(q34;q11) 
act(3q26) 

BCRex13/ABLex2 
Activation of EVI1 

New case 

 49 present F 49 CML-BC - t(9;22)(q34;q11) BCRex13/ABLex2 New case 

 52 present M 92 CML 16 act(3q26) Activation of EVI1 New case 

 53* present F 62 CML 17 t(9;22)(q34;q11) 
act(3q26) 

BCRex13/ABLex2 
Activation of EVI1 

New case 

 37 remission M 25 CML - Negative  The initial analysis showed CML with 

t(9;22)(q34;q11). Treatment was started 
by Imatinib. Complete remission was 

achieved after 4 months. 

 50 remission M 28 CML - Negative  The initial analysis showed CML with 

t(9;22)(q34;q11). Treatment was started 
by Imatinib. Complete remission was 

achieved after 6 months. 

D      -    

 54* present M 47 HES 28 dup(11q23) 
act(3q26) 

MLLex10/MLLex2 
Activation of EVI1 

New case 

 34 present M 16 LL - Negative  New case 

Group A, patients diagnosed as ALL subtypes. Group B, patients diagnosed as AML subtypes. Group C, patients diagnosed as CML subtypes. 

Group D, patients with other hematological malignancies. 

Abbreviations: IBC, immature blast cell; M, male; F, female. Pre B-ALL, precursor B-cell acute lymphoblastic leukemia; Pro-CML, progenitor 

cell-chronic myeloid leukemia; HES, hypereosinophilic syndrome; LL, Lymphoblastic Lymphoma; ND, not done; ATRA, all trans-retinoic acid. 

Other abbreviations are similar to Table 1. 



Symbols: *Subjects with MA situation. 
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Table 4: The CBC test results in subjects with novel fusion variant. 
Case 

No. 

IBC 

(%) 

Hem 

(g/dL) 

Platelet 

/µL 

WBC 

/µL 

Neut 

(%) 

Mono 

(%) 

Eos 

(%) 

Lym 

(%) 

3* 31 6.9 24×103 16.21×103 88.2 8.6 - 2.1 

11* 21 11.1 26×103 3.94×103 23.1 2.3 1.3 72.8 

41* 24 11.6 66×103 3.77×103 11.2 11.1 0.3 76.9 

Abbreviation: Hem, hemoglobin; WBC, white blood cell; Neut, neutrophil 

cell; Mono, monocyte cell; Eos, eosinophilia cell; Lym, Lymphocyte cell. 

Other abbreviations and Symbols are similar to Table 1 and Table 3. 

 

Table 4



Fig1 Click here to download Figure Fig1.tif 
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Fig2 Click here to download Figure Fig2.tif 
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TLX1 exon1                 36bp from 3’ end of intron1                   TLX1 exon2 

                                           5’-TTCACAG TGGCCCTCTCACCCTTCACTGTAACACGCCGTATAG GTCACCC-3’                        

                                                                                                        GAAATGACCCATTCATGGCCGCCTC-3’    AFF1 exon5

                                                                                                        GACTCTCAGCATGTCAGTTCTGTAA-3’    AFF1 exon6

KMT2A exon11  5’-TGGAAGGCAACATCAGGCTACAAAG        GATTTGGAGTTCCATGGAGTGATGA-3’  AFDN exon2

                                                                                                        TCTGAACAACCCAGTCCTGCCAGCT-3’   MLLT3 exon6

                                                                                                        ATTCTTGAAGTGAAAAGTCCAATAA-3’   MLLT3 exon9
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