Annals of Hematology

Molecular Analysis of More Than 140 Gene Fusion Variants and Aberrant Activation of EVI1 and TLX1 in Hematological Malignancies --Manuscript Draft--

Manuscript Number:								
Full Title:	Molecular Analysis of More Than 140 Gene Fusion Variants and Aberrant Activation of EVI1 and TLX1 in Hematological Malignancies							
Article Type:	Original Article							
Keywords:	Leukemia; Gene Fusion; Chromosomal Tra PCR.	anslocation; EVI1 Gene; Multiplex RT-						
Corresponding Author:	Ebrahim Sakhinia, Ph.D Tabriz University of Medical Sciences Tabriz, IRAN, ISLAMIC REPUBLIC OF							
Corresponding Author Secondary Information:								
Corresponding Author's Institution:	Tabriz University of Medical Sciences							
Corresponding Author's Secondary Institution:								
First Author:	Faramarz Ghasemian Sorbeni, MS.c							
First Author Secondary Information:								
Order of Authors:	Faramarz Ghasemian Sorbeni, MS.c							
	Soheila Montazersaheb, Ph.D							
	Atefeh Ansarin, MS.c							
	Ali Esfahani, Ph.D							
	Azim Rezamand, Ph.D							
	Ebrahim Sakhinia, Ph.D							
Order of Authors Secondary Information:								
Funding Information:	•Hematology and Oncology Research Center, Tabriz University of Medical Sciences Tabriz, Iran	Mr. Faramarz Ghasemian Sorbeni						
	•Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences Tabriz, Iran	Dr. Ebrahim Sakhinia						
Abstract:	act: Gene fusions are observed in abnormal chromosomal rearrangements such as translocations in hematopoietic malignancies, especially leukemia subtypes. Hence is critical to obtain correct information about these rearrangements in order to appl proper treatment techniques. To identify abnormal molecular changes in patients v leukemia, we developed a multiplex reverse transcriptase polymerase chain reacti (MRT-PCR) protocol and investigated more than 140 gene fusions resulting from variations of 29 prevalent chromosomal rearrangements along with EVI1 and TLX oncogenic expression in the presence of optimized primers. The potential of the M PCR method was approved by evaluating the available cell lines as positive control and confirmed by sequencing. Samples from 53 patients afflicted with hematopoie malignancies were analyzed. Results revealed at least one chromosomal rearrangement in 69% of acute myeloid leukemia subjects, 64% of acute lymphobl leukemia subjects and 81% of chronic myeloid leukemia subjects, as well as a sub with hypereosinophilic syndrome. Also, five novel fusion variants were detected. Results of this study also showed that, chromosomal rearrangements, both alone in conjunction with other rearrangements, are involved in leukemogenesis. Moreov							

Title:

Molecular Analysis of More Than 140 Gene Fusion Variants and Aberrant Activation of *EVI1* and *TLX1* in Hematological Malignancies

Faramarz Ghasemian Sorbeni¹, Soheila Montazersaheb², Atefeh Ansarin³, Ali Esfahani¹, Azim Rezamand⁴, Ebrahim Sakhinia⁵

¹Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, ²Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, ³Tabriz Genetic Analysis Center (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran, ⁴Department of Pediatrics, Children Hospital, Tabriz University of Medical Sciences, Tabriz, Iran, ⁵Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Corresponding author:

Dr. Ebrahim Sakhinia

Molecular Medicine Division, Connective Tissue Diseases Research Center Fourth Floor, Emam Reza Hospital, Golgasht St, Azadi Blvd, Tabriz, Iran E-mail: ebrahim.sakhinia@yahoo.com

Phone: +984133370684

Acknowledgments:

Special thanks to Dr Reza Rahbarghazi (Tabriz University of Medical Science, Iran) for supplying the cell lines K562 and NALM-6. We appreciate of Hematology and Oncology and also Connective Tissue Disease Research Centers (Tabriz University of Medical Science, Tabriz, Iran) for financing the present study.

Abstract

Gene fusions are observed in abnormal chromosomal rearrangements such as translocations in hematopoietic malignancies, especially leukemia subtypes. Hence, it is critical to obtain correct information about these rearrangements in order to apply proper treatment techniques. To identify abnormal molecular changes in patients with leukemia, we developed a multiplex reverse transcriptase polymerase chain reaction (MRT-PCR) protocol and investigated more than 140 gene fusions resulting from variations of 29 prevalent chromosomal rearrangements along with EVI1 and TLX1 oncogenic expression in the presence of optimized primers. The potential of the MRT-PCR method was approved by evaluating the available cell lines as positive control and confirmed by sequencing. Samples from 53 patients afflicted with hematopoiesis malignancies were analyzed. Results revealed at least one chromosomal rearrangement in 69% of acute myeloid leukemia subjects, 64% of acute lymphoblastic leukemia subjects and 81% of chronic myeloid leukemia subjects, as well as a subject with hypereosinophilic syndrome. Also, five novel fusion variants were detected. Results of this study also showed that, chromosomal rearrangements, both alone and in conjunction with other rearrangements, are involved in leukemogenesis. Moreover, it was found that EVII is a suitable hallmark for hematopoietic malignancies.

Keywords:

Leukemia; Gene Fusion; Chromosomal Translocation; EVI1 Gene; Multiplex RT-PCR.

Introduction

Abnormal chromosomal rearrangements (such as translocations, deletions, insertions and duplications) are among genomic alterations [1] that have different effects on protooncogenes [2, 3]. Development of a double-strand break in DNA is a precursor for the formation of such rearrangement [1-3]. DNA double-strand breaks are generated in gene rearrangements of immunoglobulins and T-cell receptors which defect in postcleavage repair complexes promotes the generation of aberrant gene fusion [2, 3]. Gene fusions, for example t(15;17)(q22;q21) and inv(16)(p13.11;q22.1) can be developed in exonic or intronic breakpoints [4, 5]. In addition, a gene can have several different fusion partners, such as mixed lineage leukemia (*MLL*) gene on the 11q23 locus [6].

In the leukemia subtypes, chromosomal translocations are a major portion of detected molecular rearrangements, which involved in the leukemogenesis depending on the participant genes [2, 6]. In the other hand, in many cases, resistance to therapy or disease relapse is observed during treatment, that is sometimes associated with molecular rearrangements different from the initial detection [7-9]. Hence, an accurate diagnosis of causative agent and obtaining comprehensive information about the spread of the disease are of utmost importance for therapeutic measures. In the present study, we developed a MRT-PCR method proposed by pallisgaard et al. in order to simultaneously analyze multiple common abnormal chromosomal changes related to various leukemia subtypes, the sensitivity and specificity of which has been well described previously [3, 10, 11].

Materials and method

Patient samples and cell lines

This study was conducted according to the recommendations by the Local Ethics Committee. For the study purpose, 54 patients with hematopoietic malignancies were introduced for sampling from the Department of Hematology and Oncology, the Shahid Qazi Hospital and Children's Hospital of Tabriz University of Medical Sciences. To carry out experiments, 5 mL of peripheral blood were taken from each patient and stored in cryovials containing EDTA until use.

In order to verify the performance of primers, as well as having an external positive control for PCR reactions, we made use of RNAs extracted from the patients with known chromosomal rearrangements and available cell lines (Table 1). The cell line NB-4, KG-1 and RPMI8402 were obtained from the Pasteur Institute of Iran, the cell line K562, THP-1, REH and NALM-6 were obtained from the Stem Cell Research Center and the cell line HL-60 was obtained from the Biotechnology Research Center of Tabriz University of Medical Sciences. All the cell lines were cultured in the RPMI-1640 medium supplemented with 10% fetal bovine serum and penicillin-streptomycin antibiotic. The medium for the cell line THP-1 was supplemented with 50µM of 2-Mercaptoethanol [12].

RNA preparation

Total RNA was extracted from the cell lines and patients sample using the QIAamp RNA Blood Mini Kit (Qiagen, USA) according to the manufacturer's instructions and stored at -

80°C. Quantity and quality of RNA was assessed in two ways: first, two microliters of the final RNA mixture were assessed using an Nanodrop Epoch Microplate Spectrophotometer (BioTek, USA); second, a GAP-PCR protocol was used for examining the presence of DNA contamination in the RNA mixture. In this regard, the RT-PCR reaction was carried out using the REVERTA-L RT Reagents Kit (AmpliSens, Russia) based on random hexamer primers according to the manufacturer's instructions. Then, the GAP-PCR reaction mixture was performed with a final volume of 10µL including 2µL of the cDNA mixture, 6µL of Taq DNA Polymerase 1.1x Master Mix Red (Ampliqon, Denmark), 2µL of the primer mixture (5Pmol of each reverse and forward primer). The primers are shown in Table 2. The PCR program included an initial denaturation at 95°C for 2 minutes, followed by 35 cycles of PCR amplification (annealing at 60°C for 30 seconds, elongation at 72°C for 30 seconds and denaturation at 95°C for 30 seconds) and a final 5-minute extension at 72°C. The PCR reaction amplifies a 219bp segment of the GAPDH cDNA. The presence of another band is indicative of DNA contamination (Figure 1C). Five microliters of each PCR product were electrophoresed on 1.5% agarose gel stained with the DNA Safe Stain (CinnaGen Co, Iran) at 100V for 60 minutes. Negative controls without the cDNA sample were considered for all the GAP-PCR reactions. Finally, in case of any DNA contamination, DNAse digestion of the RNA mixture and following that re-purification of the total RNA was performed using the RNase-Free DNase Set and RNA Cleanup protocol (Qiagen, USA), respectively.

Multiplex RT-PCR

In order to perform the MRT-PCR reaction with high sensitivity, a series of specific reverse primers for a group of fusion transcripts and gene rearrangements were used [3]. All tubes and pipette tips treated in DEPC water. One microgram of total RNA was incubated at 65°C for 5 minutes with a mixture of specific primers (3pmol of each) and then reverse transcribed by incubation at 37°C for 45 minutes in a total volume of 25µL containing 20U RNase inhibitor (Invitrogen, UK), 1mM of each dNTP, 10mM dithiothreitol, 50mM Tris-HCl, pH 8.3, 75mM KCl, 3mM MgCl₂, and 200U Moloney murine leukemia virus (M-MLV) reverse transcriptase (Invitrogen, UK). After each MRT-PCR reaction, two microliters of the final product were withdrawn for quantification using a Nanodrop Epoch Microplate Spectrophotometer (BioTek, USA).

Nested multiplex-PCR

MRT-PCR amplification was carried out as 8 nested multiplex reactions in two steps by Eppendorf Mastercycler (Eppendorf, Germany), in the presence of two primer sets proposed by Pallisgaard et al. [3]. Each reaction mixture contained a pair of primers that amplifies a 690bp segment of ubiquitously expressed transcription factor E2A as internal positive control. The first step of the Nested Multiplex-PCR (NM-PCR) performed as 8 parallel reactions in a total volume of 20µL containing 1µL of cDNA mixture, 8µL of ddH₂O, 10µL of Taq DNA Polymerase 1.1x Master Mix Red (Ampliqon, Denmark), and 1µL of the primer mix (5pmol of each primer). The PCR program comprised of an initial denaturation at 95°C for 15 minutes, followed by 25 cycles of PCR amplification (annealing at 58°C for 30 seconds, elongation at 72°C for 1 minute, and denaturation at 95°C for 30 seconds). Two microliters aliquots from the first 8 PCR products were transferred to the second 8 PCR

reaction mixtures with a total volume of 23μ L containing 8μ L of ddH₂O, 12.5μ L of Taq DNA Polymerase 1.1x Master Mix Red (Ampliqon, Denmark), and 2.5μ L of the primer mix (5pmol of each primer). The PCR program comprised of an initial denaturation at 95°C for 15 minutes, followed by 20 cycles of PCR amplification (annealing at 58°C for 30 seconds, elongation at 72°C for 1 minute, and denaturation at 95°C for 30 seconds), and finally by 10 minutes of extension at 72°C. Ten microliters of each PCR reaction electrophoresed in a 1.5% agarose gel stained with DNA Safe Stain (CinnaGen Co, Iran) for 60 minutes at 100V. Negative controls without cDNA template were included for all the PCR reactions. Also, the cDNA prepared from the HL-60 cell line as a normal control was used for all the PCR reactions.

Evaluation of primers

All the primers proposed for MRT-PCR and NM-PCR were evaluated using the OLIGO Primer Analysis Software Version 7.5 (Molecular Biology Insights Inc, USA) and by the published transcript sequence data in the ENSEMBL database. In this regard, the sequences of breakpoint associated with each fusion partner as donor (3' site) and acceptor (5' site) elements were placed next to each other, and PCR simulation was performed in the presence of primers specific to each fusion transcript. In most cases, the responses were appropriate, and only in two cases, the primers related to *AFF1* and *SET* were changed (Table 2). Moreover, the primers performance was confirmed when the cell lines and subjects with known abnormality were examined (Figure 1A). Thus, the materials from cell line RPMI8402 was used for act(3q26), act(10q24) and del(1p32), THP-1 for t(9;11)(p22;q23), K562 for t(9;22)(q34;q11) variant b3a2, REH for t(12;21)(p13;q22.3) and NB-4 for t(15;17)(q22;q21), as well as, positive control obtained from the subjects materials used for inv(16)(p13;q22.1), t(4;11)(q21;q23), t(6;11)(q27;q23), t(8;21)(q22;q22.3), t(9;22)(q34;q11) variant b2a2 and t(11;19)(q23;p13.1).

Split-out PCR reaction

Since each multiplex-PCR mixture consists of a combination of primer pairs for detection of several fusion transcripts, PCR products may have similar or closely similar sizes. Thus, when one or more fusion transcripts were detected in one or more PCR mixtures, multiplex PCR were separated into individual PCRs to accurately detect type of fusion transcript and also, to confirm the result of the NM-PCR (Figure 1B). In this regard, we performed the Split-Out PCR with individual primer pairs for each rearrangement belong to the second step of NM-PCR and 2μ L from the first step product as a template. Moreover, the split-out PCR reaction was performed under the conditions similar to PCR program from the first step and reaction mixture from the second step of NM-PCR. Normal control of the NM-PCR product of the cell line HL-60, as well as the external positive control prepared from the cell lines and subjects with known abnormalities were considered for all the split-out reactions.

Sequencing analysis

Products from the split-out reaction were confirmed by sequencing of the amplified segment. In this regard, the DNA segments were purified from the agarose gel by the Keith Expin Gel SV Kit (GeneAll, Korea) according to the manufacturer's instructions. Purification product

delivered for automated standard sequencing by 3730x1 DNA analyzer (Macrogen Inc, Korea). Results of the sequencing were evaluated using the chromatogram analysis software, Chromas 2.5.1 (Technelysium Pty Ltd, Australia).

Results and discussion

Of the 54 samples collected from the patients with hematopoietic malignancies, 53 subjects were investigated, including 26 patients with acute myeloid leukemia (AML), 14 patients with acute lymphoblastic leukemia (ALL), 11 patients with chronic myeloid leukemia (CML), one patient with lymphoblastic lymphoma and one patient with hypereosinophilic syndrome (HES) with active bone marrow. One patient with ALL was excluded due to very low count of white blood cells (Subject No. 51 in the remission status). The results in this study demonstrated at least one chromosomal rearrangement in 18/26 (69%) of the AML subjects, 9/14 (64%) of the ALL subjects and 9/11 (84%) of the CML subjects, and also an HES subject (Table 3). Multiple anomalies (MA) were significantly observed in majority of the positive subjects (Figure 2A), as a rearrangement was identified in conjunction with one or more various rearrangements rather than with different variants of a rearrangement.

The abnormal rearrangements observed as MA include the following: t(16;21)(p11.2;q22.3), t(12;21)(p13;q22.3), t(1;19)(q23;p13), t(4;11)(q21;q23) and inappropriate activation of the TLX1 gene in the 10q24 locus (named as act(10q24) in this study) in the ALL subjects; t(9;11)(p22;q23), t(8;21)(q22;q22), t(10;11)(p12;q23), t(15;17)(q22;q21) and dup(11q23) in the AML subjects; t(9;22)(q34;q11) in the CML subjects; and dup(11q23) in the only HES subject. It is noteworthy that the t(4;11)(q21;q23), t(8;21)(q22;q22), t(15;17)(q22;q21) and t(9;22)(q34;q11)translocations even individually detected. were Moreover, inv(16)(p13.11;q22.1) was individually detected in the two AML-M4Eo subjects, and was not identified in form of MA in any subjects. However, the t(11;19)(q23;p13.1) and t(6;11)(q27;q23) translocations were detected as MA in the both groups of AML and ALL patients. Furthermore, aberrant activation of Ecotropic Viral Integration Site-1 (EVII) protooncogene in 3q26 locus (named as act(3q26) in this study) was observed as individual in the AML, ALL and CML subjects. Act(3q26) was also detected as MA in the AML, ALL, CML and HES subjects (Figure 2B).

The results in this study revealed a number of novel fusion variants in the patient materials (Figure 3) in the form of MA: (a) subject No.3, the MRT-PCR analysis showed that MA included a novel variant of *KMT2A*ex11/*AFDN*ex2 from t(6;11)(q27;q23) and two novel variants of *KMT2A*ex11/*MLLT3*ex9 and *KMT2A*ex11/*MLLT3*ex6 from t(9;11)(p22;q23), t(11;19)(q23;p13.1), t(15;17)(q22;q21) and act(3q26); (b) subject No.11, the MRT-PCR analysis showed that MA included the act(10q24) as a predicted isoform in NCBI Reference Sequence, and act(3q26); (c) subject No.41, the MRT-PCR analysis also demonstrated that MA consisted of t(11;19)(q23;p13.1) which was previously reported only in an AML subject with French-American-British (FAB) classification M5 [70] (a novel disease observation), t(4;11)(q21;q23) as *KMT2A*ex10/*AFF1*ex6 and two novel variants *KMT2A*ex11/*AFF1*ex5 and *KMT2A*ex11/*AFF1*ex6, as well as act(3q26). More details such as cell blood counting (CBC) test results were indexed in Table 4.

б

Discussion

In a review study on researches published from 1998 to 2016, based on similar methodology with the one used in the current study and/or case reports, 29 novel fusion variants with considerable prognostic and therapeutic impact were reported, which are detectable with the primers used in this study, even a three-way translocation between the genes *PML*, *ADAMTS17* and *RARA* which has been recently reported in a patient with AML-M3 [76]. Summary of the data on the novel translocations and variants is given in Table 1. Hence, we developed the MRT-PCR method for the simultaneous detection of more than 140 gene fusion variants containing 29 abnormal chromosomal rearrangements. Moreover, a series of cell lines and novel disease observation are listed in Table 1.

The greatest frequency of detection belonged to act(3q26) (29.36=69%) in the positive leukemia subjects, followed by the translocations t(4;11)(q21;q23), t(15;17)(q22;q21) and t(9;22)(q34;q11) in the ALL, AML and CML subjects, respectively. Anomalies such as del(1p32), t(X;11)(q13.1;q23), t(1;11)(q21;q23),t(1;11)(p32;q23), t(2;5)(p23;q35.1), t(3;5)(q25.1;q35.1), t(3;21)(q26.2;q22.3), t(5;12)(q33;p13), t(5;17)(q35.1;q22), t(9;9)(q34.11;q34.13), t(6;9)(p22.3;q34.1), t(9;12)(q34.1;p13), t(11;17)(q23.1;q21), t(11;17)(q23;q21), t(11;19)(q23;p13.3) and t(17;19)(q22;p13.3) were not observed in our study. This is while such anomalies could be detected in case the MRT-PCR method is used. This is because of proper performance of the primers in the PCR simulation and also, due to the fact that these anomalies were detected in previous studies with similar methodology [3,10,11]. This result could be attributed to low frequency of these anomalies. For example, the incidence of less than 1% for t(17;19)(q22;p13.3) and t(6;9)(p22.3;q34.1) was respectively reported in ALL and AML [89]. Also, the absence of these translocations in our results could be due to the small sample size. However, we had the positive control materials for t(3;21)(q26.2;q22.3), t(5;12)(q33;p13), t(9;12)(q34.1;p13) and t(11;19)(q23;p13.3), which were obtained from the subjects who were not enrolled in the study and were confirmed by the sequencing. In addition, t(9;22) could be detected in more than 95% of the CML subjects [62]; however, t(9;22) was not detected in two of the study CML subjects (the subjects 37 and 50). These patients underwent targeted treatment by first-generation tyrosine kinase inhibitor and were in the remission status. Furthermore, many uncommon translocations related to immunoglobulin and T-cell receptor genes or tyrosine kinase and nucleoporin groups were not investigated in the MRT-PCR method. Thus, the presence of negative outcomes could be partly attributed to these anomalies. However, cytogenetic anomalies could not be ignored.

Importantly, anomalies were in form of MA in 21/37 positive subjects (\approx 57%), which were detected in all the Present, Remission and Relapse situations (respectively in the subjects 16, 28 and 48). This could be due to the presence of clones with several abnormalities or spread of several clones with different abnormalities compared to one another, which justifies the detection of the MA status in the new cases. As well as, detection of the rearrangements among the subjects in remission status could be attributed to the presence of residual leukemic cells (the subjects 10, 28 and 29). Also, the presence of cryptic clones with different anomalies that were not detected in the initial diagnosis and thus not received any treatment can be a cause for disease relapse (the subject 31). Such similar cases have been previously reported both in APL and CML patients [7,8]. Thus, the MA status can be attributed to a

cause for resistance to therapy or disease relapse, which commonly occurs during treatment. Moreover, several anomalies, including t(16;21)(p11.2;q22.3), t(12;21)(p13;q22.3), t(1;19)(q23;p13), act(10q24), t(9;11)(p22;q23), t(10;11)(p12;q23) and dup(11q23) were detected only in the MA status (Table 3). The question arises whether these anomalies are only involved in the aggressive form of the disease. This argument is very important for prognosis and minimal residual disease (MRD), and requires comprehensive genomic studies with greater sample sizes.

The *EVI1* gene is located downstream of the *MDS1* gene and encodes a nuclear DNA-binding transcription factor with two zinc finger domains [90]. Previous studies have shown that act(3q26) is involved in the pathogenesis of ALL, AML and myelodysplastic syndrome (MDS) [91-93]. These reports are in line with the results obtained in our study, as act(3q26) was detected in the positive AML (61%) and ALL (89%) subjects. In addition, the results in the current study revealed act(3q26) in 67% of the positive CML subjects, as well as in one HES subject.

In our study sample, there was no abnormality in the chromosome 3, especially the translocation t(3;21)(q26.2;q22.3) which involves the *MDS1-EVI1* complex locus (*MECOM*). This suggests that act(3q26) can be developed independently of 3q26 disorders. In addition, act(3q26) was identified both in the presence and absence of several abnormalities including *KMT2A* rearrangements, t(12;21)(p13;q22.3), t(9;22)(q34;q11), and occasions where it observed alone (Figure 2B). These results are in line with those of previous studies [14,92,94]. Hence, these results suggest further pathways for creation of the act(3q26).

Aberrant activation of *EVI1* was observed in patients with a wide range of 2 to 92 years of age (Figure 2C). As a result, the relationship between age and act(3q26) could not be further discussed. Elsewhere, *EVI1* gene expression patterns were evaluated and observed to have a negative correlation with increasing age in AML patients [17].

This approved that increased or decreased *EVI1* expression is respectively associated with inhibition and incitement of cell differentiation [90,93]. On the other hand, immature blast cells were detected in CBC results of subjects with act(3q26) ranging from 4 to 36%. Accordingly, detection of act(3q26) in peripheral blood samples could be due to the presence of immature blast cells. In a summary of the discussion on *EVI1*, all the results show that *EVI1* is a suitable hallmark for hematopoietic malignancies and is considerable in terms of diagnostics.

TLX1, also known as *HOX11*, encodes a DNA binding protein that has a homeodomain and is involved in cell growth and differentiation as a transcription regulator of genes [95]. According to previous studies, aberrant activation of *TLX1* occurs during the translocations t(10;14)(q24;q11) and together with the variant t(7;10)(q35;q24) [18,96]. In this pathway, regulatory sequence of genes *TRA/D* (14q11) and *TRB* (7q35) is placed upstream of the *TLX1* and forces it to exhibit irregular expression, as an oncogenic approach to extend T-cell ALL described previously [97,98]. Act(10q24) was also detected in the subjects 1, 11 and 39. In the subject No.11, a *TLX1* transcript with 36bp additional sequence from the 3' end of *TLX1* intron 1 fused to the 5' end of exon 2 was detected as a splice variant known as Transcript Variant X1 (Table 1, Figure 3). This transcript also contains a homeodomain that can have performance similar to that of other variants. Spread of T-cell ALL in this patient may be due to the presence of this transcript as a result of the mentioned translocations. On the other

hand, regardless of RPMI8402 that is a T-cell ALL cell line, act(10q24) was detected during the MRT-PCR analysis of the cell lines KG-1 (AML), K562 (CML-BC), NALM-6 (Pre B-cell ALL) and REH (non B/T-cell ALL). This was a paradoxical result, since the translocations t(10;14)(q24;q11) and t(7;10)(q35;q24) have not been reported in these cell lines, and even in patients without acute T-cell leukemia. It is obvious that act(10q24) plays an important role in the development of leukemia; however, our results suggest that, in addition to the involvement of the aforementioned translocations, other mechanisms are also involved in creation of act(10q24). For example, it is shown that a complex containing PBX2 regulatory element contributes to act(10q24) in cell line K562 [99].

In conclusion, it became clear that chromosomal rearrangements in most cases are involved as MA in the development and spread of hematopoietic malignancies and may be correlated with disease relapse and resistance to therapy. Therefore, diagnosis of MA status in patients with hematopoietic malignancy is of paramount importance and helps in selecting the appropriate treatment. Moreover, act(3q26) was clearly observed to have an influential role in the development of hematopoietic malignancies, and is not merely associated with a specific leukemic subtype or molecular chromosomal abnormality. It also seems that, in addition to amplification of gene expression by the translocation, many other pathways are involved in the development of act(10q26).

Authorship contributions

FGS and ES, data collection and design of study; ES, standardization and management of research procedures; FGS, perform the molecular investigations on patient samples and cell lines; FGS, responsibility for the first draft of the manuscript; SM, implementation of process related to the preparation of cell lines; FGS and AA, RNA preparation; AE and AR, pathological assessment of patients and introduce them for sampling.

Reference

1. Bacolla A, Tainer JA, Vasquez KM, Cooper DN (2016) Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences. Nucleic Acids Res 44 (12):5673-5688. doi:10.1093/nar/gkw261

2. Nambiar M, Raghavan SC (2011) How does DNA break during chromosomal translocations? Nucleic Acids Res 39 (14):5813-5825. doi:10.1093/nar/gkr223

3. Pallisgaard N, Hokland P, Riishoj DC, Pedersen B, Jorgensen P (1998) Multiplex reverse transcription-polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute leukemia. Blood 92 (2):574-588

4. Liu PP, Hajra A, Wijmenga C, Collins FS (1995) Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia. Blood 85 (9):2289-2302

5. Pandolfi PP, Alcalay M, Fagioli M, Zangrilli D, Mencarelli A, Diverio D, Biondi A, Lo Coco F, Rambaldi A, Grignani F, et al. (1992) Genomic variability and alternative splicing generate multiple PML/RAR alpha transcripts that encode aberrant PML proteins and PML/RAR alpha isoforms in acute promyelocytic leukaemia. EMBO J 11 (4):1397-1407

6. Meyer-Monard S, Parlier V, Passweg J, Muhlematter D, Hess U, Bargetzi M, Kuhne T, Cabrol C, Gratwohl A, Jotterand M, Tichelli A (2006) Combination of broad molecular

- acute leukemia. Leukemia 20 (2):247-253. doi:10.1038/sj.leu.2404044 7. Bonomi R, Giordano H, del Pilar Moreno M, Bodega E, Landoni AI, Gallagher R, del Rosario Uriarte M (2000) Simultaneous PML/RARalpha and AML1/ETO expression with t(15;17) at onset and relapse with only t(8;21) in an acute promyelocytic leukemia patient. б Cancer Genet Cytogenet 123 (1):41-43 8. Berger R, Bernheim A, Daniel MT, Flandrin G (1983) t(15;17) in a promyelocytic form of chronic myeloid leukemia blastic crisis. Cancer Genet Cytogenet 8 (2):149-152 9. Licht JD (2001) AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene 20 (40):5660-5679. doi:10.1038/sj.onc.1204593 10. Elia L, Mancini M, Moleti L, Meloni G, Buffolino S, Krampera M, De Rossi G, Foa R, Cimino G (2003) A multiplex reverse transcriptase-polymerase chain reaction strategy for the diagnostic molecular screening of chimeric genes: a clinical evaluation on 170 patients with acute lymphoblastic leukemia. Haematologica 88 (3):275-279
 - 11. Geng Z, Zhang H, Wang D, Xiao Y, Wang N, Li C, Huang L, Zhou J (2012) Combination of cytogenetic analysis and molecular screening in patients with de novo acute myeloid leukemia. J Huazhong Univ Sci Technolog Med Sci 32 (4):501-510. doi:10.1007/s11596-012-0087-6

screening and cytogenetic analysis for genetic risk assignment and diagnosis in patients with

- 12. Pruett SB, Obiri N, Kiel JL (1989) Involvement and relative importance of at least two distinct mechanisms in the effects of 2-mercaptoethanol on murine lymphocytes in culture. J Cell Physiol 141 (1):40-45. doi:10.1002/jcp.1041410107
- 13. De Weer A, Poppe B, Cauwelier B, Van Roy N, Dastugue N, Hagemeijer A, De Paepe A,
 Speleman F (2006) Screening for EVI1: ectopic expression absent in T-cell acute
 lymphoblastic leukemia patients and cell lines. Cancer Genet Cytogenet 171 (1):79-80.
 doi:10.1016/j.cancergencyto.2006.07.004
- 14. Sato T, Goyama S, Kataoka K, Nasu R, Tsuruta-Kishino T, Kagoya Y, Nukina A, Kumagai K, Kubota N, Nakagawa M, Arai S, Yoshimi A, Honda H, Kadowaki T, Kurokawa M (2014) Evi1 defines leukemia-initiating capacity and tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Oncogene 33 (42):5028-5038. doi:10.1038/onc.2014.108
- 15. Raza A, Buonamici S, Lisak L, Tahir S, Li D, Imran M, Chaudary NI, Pervaiz H, Gallegos JA, Alvi MI, Mumtaz M, Gezer S, Venugopal P, Reddy P, Galili N, Candoni A, Singer J, Nucifora G (2004) Arsenic trioxide and thalidomide combination produces multilineage hematological responses in myelodysplastic syndromes patients, particularly in those with high pre-therapy EVI1 expression. Leuk Res 28 (8):791-803. doi:10.1016/j.leukres.2003.11.018
- 16. Smol T, Nibourel O, Marceau-Renaut A, Celli-Lebras K, Berthon C, Quesnel B, Boissel N, Terre C, Thomas X, Castaigne S, Dombret H, Preudhomme C, Renneville A (2015) Quantification of EVI1 transcript levels in acute myeloid leukemia by RT-qPCR analysis: A study by the ALFA Group. Leuk Res 39 (12):1443-1447. doi:10.1016/j.leukres.2015.09.021
- 17. Stevens A, Hanson D, de Leonibus C, Whatmore A, Donn R, White DJ, Liu J, van den Heuvel-Eibrink MM, Saha V, Clayton PE, Meyer S (2014) EVI1 expression in childhood acute lymphoblastic leukaemia is not restricted to MLL and BCR/ABL rearrangements and is influenced by age. Blood Cancer J 4:e179. doi:10.1038/bcj.2013.76

18. Kennedy MA, Gonzalez-Sarmiento R, Kees UR, Lampert F, Dear N, Boehm T, Rabbitts TH (1991) HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc Natl Acad Sci U S A 88 (20):8900-8904

19. Aplan PD, Lombardi DP, Ginsberg AM, Cossman J, Bertness VL, Kirsch IR (1990) Disruption of the human SCL locus by "illegitimate" V-(D)-J recombinase activity. Science 250 (4986):1426-1429

20. Caligiuri MA, Strout MP, Schichman SA, Mrozek K, Arthur DC, Herzig GP, Baer MR, Schiffer CA, Heinonen K, Knuutila S, Nousiainen T, Ruutu T, Block AW, Schulman P, Pedersen-Bjergaard J, Croce CM, Bloomfield CD (1996) Partial tandem duplication of ALL1 as a recurrent molecular defect in acute myeloid leukemia with trisomy 11. Cancer Res 56 (6):1418-1425

21. Poirel H, Rack K, Delabesse E, Radford-Weiss I, Troussard X, Debert C, Leboeuf D, Bastard C, Picard F, Veil-Buzyn A, Flandrin G, Bernard O, Macintyre E (1996) Incidence and characterization of MLL gene (11q23) rearrangements in acute myeloid leukemia M1 and M5. Blood 87 (6):2496-2505

22. van der Reijden BA, Dauwerse HG, Giles RH, Jagmohan-Changur S, Wijmenga C, Liu PP, Smit B, Wessels HW, Beverstock GC, Jotterand-Bellomo M, Martinet D, Muhlematter D, Lafage-Pochitaloff M, Gabert J, Reiffers J, Bilhou-Nabera C, van Ommen GJ, Hagemeijer A, Breuning MH (1999) Genomic acute myeloid leukemia-associated inv(16)(p13q22) breakpoints are tightly clustered. Oncogene 18 (2):543-550. doi:10.1038/sj.onc.1202321

23. Stulberg J, Kamel-Reid S, Chun K, Tokunaga J, Wells RA (2002) Molecular analysis of a new variant of the CBF beta-MYH11 gene fusion. Leuk Lymphoma 43 (10):2021-2026. doi:10.1080/1042819021000015989-1

24. Rowe D, Strain L, Lowe C, Jones G (2007) A case of acute myeloid leukemia with inv(16)(p13q22) reveals a novel MYH11 breakpoint and a new CBF beta-MYH11 transcript variant. Haematologica 92 (10):1433-1434. doi:10.3324/haematol.11536

25. Borkhardt A, Repp R, Haas OA, Leis T, Harbott J, Kreuder J, Hammermann J, Henn T, Lampert F (1997) Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene 14 (2):195-202. doi:10.1038/sj.onc.1200814

26. Tse W, Zhu W, Chen HS, Cohen A (1995) A novel gene, AF1q, fused to MLL in t(1;11) (q21;q23), is specifically expressed in leukemic and immature hematopoietic cells. Blood 85 (3):650-656

27. Busson-Le Coniat M, Salomon-Nguyen F, Hillion J, Bernard OA, Berger R (1999) MLL-AF1q fusion resulting from t(1;11) in acute leukemia. Leukemia 13 (2):302-306

28. Lee SG, Park TS, Yang JJ, Oh SH, Cho EH, Lee S, Oh D, Huh JY, Marschalek R, Meyer C (2012) Molecular identification of a new splicing variant of the MLL - MLLT11 fusion transcript in an adult with acute myeloid leukemia and t(1;11)(q21;q23). Acta Haematol 128 (3):131-138. doi:10.1159/000338258

29. Sagawa M, Shimizu T, Shimizu T, Awaya N, Mitsuhashi T, Ikeda Y, Okamoto S, Kizaki M (2006) Establishment of a new human acute monocytic leukemia cell line TZ-1 with t(1;11)(p32;q23) and fusion gene MLL-EPS15. Leukemia 20 (9):1566-1571. doi:10.1038/sj.leu.2404305

б

30. Bernard OA, Mauchauffe M, Mecucci C, Van den Berghe H, Berger R (1994) A novel gene, AF-1p, fused to HRX in t(1;11)(p32;q23), is not related to AF-4, AF-9 nor ENL. Oncogene 9 (4):1039-1045

31. Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD, Cleary ML (1990) Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60 (4):535-545

32. Izraeli S, Kovar H, Gadner H, Lion T (1992) Unexpected heterogeneity in E2A/PBX1 fusion messenger RNA detected by the polymerase chain reaction in pediatric patients with acute lymphoblastic leukemia. Blood 80 (6):1413-1417

33. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263 (5151):1281-1284

34. Trumper L, Daus H, Merz H, von Bonin F, Loftin U, Cochlovius C, Moller P, Feller AC, Pfreundschuh M (1997) NPM/ALK fusion mRNA expression in Hodgkin and Reed-Sternberg cells is rare but does occur: results from single-cell cDNA analysis. Ann Oncol 8 Suppl 2:83-87

35. Weisenburger DD, Gordon BG, Vose JM, Bast MA, Chan WC, Greiner TC, Anderson JR, Sanger WG (1996) Occurrence of the t(2;5)(p23;q35) in non-Hodgkin's lymphoma. Blood 87 (9):3860-3868

36. Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ, Carroll AJ, Morris SW (1996) The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 12 (2):265-275

37. Mitani K, Ogawa S, Tanaka T, Miyoshi H, Kurokawa M, Mano H, Yazaki Y, Ohki M, Hirai H (1994) Generation of the AML1-EVI-1 fusion gene in the t(3;21)(q26;q22) causes blastic crisis in chronic myelocytic leukemia. EMBO J 13 (3):504-510

38. Nucifora G, Begy CR, Kobayashi H, Roulston D, Claxton D, Pedersen-Bjergaard J, Parganas E, Ihle JN, Rowley JD (1994) Consistent intergenic splicing and production of multiple transcripts between AML1 at 21q22 and unrelated genes at 3q26 in (3;21)(q26;q22) translocations. Proc Natl Acad Sci U S A 91 (9):4004-4008

39. Yamamoto K, Seto M, Iida S, Komatsu H, Kamada N, Kojima S, Kodera Y, Nakazawa S, Saito H, Takahashi T, et al. (1994) A reverse transcriptase-polymerase chain reaction detects heterogeneous chimeric mRNAs in leukemias with 11q23 abnormalities. Blood 83 (10):2912-2921

40. Downing JR, Head DR, Raimondi SC, Carroll AJ, Curcio-Brint AM, Motroni TA, Hulshof MG, Pullen DJ, Domer PH (1994) The der(11)-encoded MLL/AF-4 fusion transcript is consistently detected in t(4;11)(q21;q23)-containing acute lymphoblastic leukemia. Blood 83 (2):330-335

41. Ivanov IC, Jitaru D, Grigore GE, Zlei M, Ivanov AV, Dumitras S, Carasevici E, Miron IC (2013) Infant acute leukemia with lineage switch at relapse expressing a novel t(4;11)(q21;q23) MLL-AF4 fusion transcript. Revista Româd de Medicin de Laborator 21:47-58. doi:10.2478/rrlm-2013-0017

42. Corral J, Forster A, Thompson S, Lampert F, Kaneko Y, Slater R, Kroes WG, van der Schoot CE, Ludwig WD, Karpas A, et al. (1993) Acute leukemias of different lineages have

similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation. Proc Natl Acad Sci U S A 90 (18):8538-8542

43. Abdelhaleem M, Yi Q, Beimnet K, Grant R (2007) A Novel t(4;11)(q21;q23) MLL-AF4 fusion transcript in infant leukemia. Am J Hematol 82 (3):247. doi:10.1002/ajh.20731

44. Curtis CE, Grand FH, Waghorn K, Sahoo TP, George J, Cross NC (2007) A novel ETV6-PDGFRB fusion transcript missed by standard screening in a patient with an imatinib responsive chronic myeloproliferative disease. Leukemia 21 (8):1839-1841. doi:10.1038/sj.leu.2404728

45. Golub TR, Barker GF, Lovett M, Gilliland DG (1994) Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77 (2):307-316

46. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ (1996) The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 87 (3):882-886

47. Hamaguchi H, Nagata K, Yamamoto K, Fujikawa I, Kobayashi M, Eguchi M (1998) Establishment of a novel human myeloid leukaemia cell line (FKH-1) with t(6;9)(p23;q34) and the expression of dek-can chimaeric transcript. Br J Haematol 102 (5):1249-1256

48. Chen S, Xue Y, Zhang X, Wu Y, Pan J, Wang Y, Ceng J (2005) A new human acute monocytic leukemia cell line SHI-1 with t(6;11)(q27;q23), p53 gene alterations and high tumorigenicity in nude mice. Haematologica 90 (6):766-775

49. Kakuda H, Sato T, Hayashi Y, Enomoto Y, Takayama J, Ohira M, Seto M, Ueda R, Fuse A, Niimi H (1996) A novel human leukaemic cell line, CTS, has a t(6;11) chromosomal translocation and characteristics of pluripotent stem cells. Br J Haematol 95 (2):306-318

50. Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y, Kamada N, Ohki M (1993) The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J 12 (7):2715-2721

51. Matozaki S, Nakagawa T, Kawaguchi R, Aozaki R, Tsutsumi M, Murayama T, Koizumi T, Nishimura R, Isobe T, Chihara K (1995) Establishment of a myeloid leukaemic cell line (SKNO-1) from a patient with t(8;21) who acquired monosomy 17 during disease progression. Br J Haematol 89 (4):805-811

52. Quentmeier H, Schneider B, Rohrs S, Romani J, Zaborski M, Macleod RA, Drexler HG (2009) SET-NUP214 fusion in acute myeloid leukemia- and T-cell acute lymphoblastic leukemia-derived cell lines. J Hematol Oncol 2:3. doi:10.1186/1756-8722-2-3

53. Van Vlierberghe P, van Grotel M, Tchinda J, Lee C, Beverloo HB, van der Spek PJ, Stubbs A, Cools J, Nagata K, Fornerod M, Buijs-Gladdines J, Horstmann M, van Wering ER, Soulier J, Pieters R, Meijerink JP (2008) The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood 111 (9):4668-4680. doi:10.1182/blood-2007-09-111872

54. Rosati R, La Starza R, Barba G, Gorello P, Pierini V, Matteucci C, Roti G, Crescenzi B, Aloisi T, Aversa F, Martelli MF, Mecucci C (2007) Cryptic chromosome 9q34 deletion generates TAF-Ialpha/CAN and TAF-Ibeta/CAN fusion transcripts in acute myeloid leukemia. Haematologica 92 (2):232-235

55. Pession A, Martino V, Tonelli R, Beltramini C, Locatelli F, Biserni G, Franzoni M, Freccero F, Montemurro L, Pattacini L, Paolucci G (2003) MLL-AF9 oncogene expression

б

affects cell growth but not terminal differentiation and is downregulated during monocytemacrophage maturation in AML-M5 THP-1 cells. Oncogene 22 (54):8671-8676. doi:10.1038/sj.onc.1207125

56. Montemurro L, Tonelli R, Fazzina R, Martino V, Marino F, Pession A (2004) Identification of two MLL-MLLT3 (alias MLL-AF9) chimeric transcripts in the MOLM-13 cell line. Cancer Genet Cytogenet 154 (1):96-97. doi:10.1016/j.cancergencyto.2004.01.029

57. Alonso CN, Longo PL, Gallego MS, Medina A, Felice MS (2008) A novel AF9 breakpoint in MLL-AF9-positive acute monoblastic leukemia. Pediatr Blood Cancer 50 (4):869-871. doi:10.1002/pbc.21393

58. Nakamura T, Alder H, Gu Y, Prasad R, Canaani O, Kamada N, Gale RP, Lange B, Crist WM, Nowell PC, et al. (1993) Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc Natl Acad Sci U S A 90 (10):4631-4635

59. Mitterbauer G, Zimmer C, Fonatsch C, Haas O, Thalhammer-Scherrer R, Schwarzinger I, Kalhs P, Jaeger U, Lechner K, Mannhalter C (1999) Monitoring of minimal residual leukemia in patients with MLL-AF9 positive acute myeloid leukemia by RT-PCR. Leukemia 13 (10):1519-1524

60. Baeumler J, Szuhai K, Falkenburg JH, van Schie ML, Ottmann OG, Nijmeijer BA (2008) Establishment and cytogenetic characterization of a human acute lymphoblastic leukemia cell line (ALL-VG) with ETV6/ABL1 rearrangement. Cancer Genet Cytogenet 185 (1):37-42. doi:10.1016/j.cancergencyto.2008.05.001

61. Park J, Kim M, Lim J, Kim Y, Han K, Kim JS, Lee S, Kim HJ, Min WS (2013) Variant of ETV6/ABL1 gene is associated with leukemia phenotype. Acta Haematol 129 (2):78-82. doi:10.1159/000342490

62. Gancheva K, Virchis A, Howard-Reeves J, Cross NC, Brazma D, Grace C, Kotzampaltiris P, Partheniou F, Nacheva E (2013) Myeloproliferative neoplasm with ETV6-ABL1 fusion: a case report and literature review. Mol Cytogenet 6 (1):39. doi:10.1186/1755-8166-6-39

63. Yamamoto K, Yakushijin K, Nakamachi Y, Miyata Y, Sanada Y, Tanaka Y, Okamura A, Kawano S, Hayashi Y, Matsuoka H, Minami H (2014) Extramedullary T-lymphoid blast crisis of an ETV6/ABL1-positive myeloproliferative neoplasm with t(9;12)(q34;p13) and t(7;14)(p13;q11.2). Ann Hematol 93 (8):1435-1438. doi:10.1007/s00277-013-1975-y

64. Matsuo Y, Drexler HG, Takeuchi M, Orita K (1999) A novel biphenotypic B-cell precursor leukemia cell line (NALM-29) carrying t(9;22)(q34;q11) established from a patient with acute leukemia. Leuk Res 23 (8):731-740

65. Hermans A, Heisterkamp N, von Linden M, van Baal S, Meijer D, van der Plas D,Wiedemann LM, Groffen J, Bootsma D, Grosveld G (1987) Unique fusion of bcr and c-ablgenes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell 51 (1):33-40

66. Chaplin T, Bernard O, Beverloo HB, Saha V, Hagemeijer A, Berger R, Young BD (1995)The t(10;11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene. Blood 86 (6):2073-2076

67. Prasad R, Leshkowitz D, Gu Y, Alder H, Nakamura T, Saito H, Huebner K, Berger R,
Croce CM, Canaani E (1994) Leucine-zipper dimerization motif encoded by the AF17 gene
fused to ALL-1 (MLL) in acute leukemia. Proc Natl Acad Sci U S A 91 (17):8107-8111

68. Strehl S, Konig M, Meyer C, Schneider B, Harbott J, Jager U, von Bergh AR, Loncarevic IF, Jarosova M, Schmidt HH, Moore SD, Marschalek R, Haas OA (2006) Molecular dissection of t(11;17) in acute myeloid leukemia reveals a variety of gene fusions with heterogeneous fusion transcripts and multiple splice variants. Genes Chromosomes Cancer 45 (11):1041-1049. doi:10.1002/gcc.20372

69. Licht JD, Chomienne C, Goy A, Chen A, Scott AA, Head DR, Michaux JL, Wu Y, DeBlasio A, Miller WH, Jr., et al. (1995) Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 85 (4):1083-1094

70. Mitani K, Kanda Y, Ogawa S, Tanaka T, Inazawa J, Yazaki Y, Hirai H (1995) Cloning of several species of MLL/MEN chimeric cDNAs in myeloid leukemia with t(11;19)(q23;p13.1) translocation. Blood 85 (8):2017-2024

71. Kakihana K, Kubo F, Wakabayashi S, Kurosu T, Miki T, Murakami N, Miura O (2008) A novel variant form of MLL-ELL fusion transcript with t(11;19)(q23;p13.1) in chronic myelomonocytic leukemia transforming to acute myeloid leukemia. Cancer Genet Cytogenet 184 (2):109-112. doi:10.1016/j.cancergencyto.2008.04.001

72. Uphoff CC, MacLeod RA, Denkmann SA, Golub TR, Borkhardt A, Janssen JW, Drexler HG (1997) Occurrence of TEL-AML1 fusion resulting from (12;21) translocation in human early B-lineage leukemia cell lines. Leukemia 11 (3):441-447

73. Romana SP, Mauchauffe M, Le Coniat M, Chumakov I, Le Paslier D, Berger R, Bernard OA (1995) The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 85 (12):3662-3670

74. Abdelhaleem M, Yi Q, Beimnet K, Hitzler J (2006) A novel TEL-AML1 fusion transcript involving the pro-apoptotic gene BCL-G in pediatric precursor B acute lymphoblastic leukemia. Leukemia 20 (7):1294. doi:10.1038/sj.leu.2404249

75. Park TS, Kim JS, Song J, Lee KA, Yoon S, Suh B, Lee JH, Lee HJ, Kim JK, Choi JR (2009) Acute promyelocytic leukemia with insertion of PML exon 7a and partial deletion of exon 3 of RARA: a novel variant transcript related to aggressive course and not detected with real-time polymerase chain reaction analysis. Cancer Genet Cytogenet 188 (2):103-107. doi:10.1016/j.cancergencyto.2008.09.002

76. Lim G, Cho EH, Cho SY, Shin SY, Park JC, Yang YJ, Oh SH, Marschalek R, Meyer C, Park TS (2011) A novel PML-ADAMTS17-RARA gene rearrangement in a patient with pregnancy-related acute promyelocytic leukemia. Leuk Res 35 (7):e106-110. doi:10.1016/j.leukres.2011.03.020

77. Hiorns LR, Min T, Swansbury GJ, Zelent A, Dyer MJ, Catovsky D (1994) Interstitial insertion of retinoic acid receptor-alpha gene in acute promyelocytic leukemia with normal chromosomes 15 and 17. Blood 83 (10):2946-2951

78. Vizmanos JL, Larrrayoz MJ, Odero MD, Lasa R, Gonzalez M, Novo FJ, Calasanz MJ (2002) Two new molecular PML-RARalpha variants: implications for the molecular diagnosis of APL. Haematologica 87 (8):ELT37

79. Zayed A, Couban S, Hayne O, Sparavalo N, Shawwa A, Sadek I, Greer W (2007) Acute promyelocytic leukemia: a novel PML/RARalpha fusion that generates a frameshift in the RARalpha transcript and ATRA resistance. Leuk Lymphoma 48 (3):489-496. doi:10.1080/10428190601136163

80. Oh SJ, Park TS, Lee JY, Mun YC, Seong CM, Marschalek R, Meyer C, Chung WS, Huh J (2013) Acute promyelocytic leukemia with a rare PML exon 4/ RARA exon 3 fusion transcript variant. Acta Haematol 130 (3):176-180. doi:10.1159/000348551

82. Kong XT, Ida K, Ichikawa H, Shimizu K, Ohki M, Maseki N, Kaneko Y, Sako M, Kobayashi Y, Tojou A, Miura I, Kakuda H, Funabiki T, Horibe K, Hamaguchi H, Akiyama Y, Bessho F, Yanagisawa M, Hayashi Y (1997) Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t(16;21)(p11;q22) and identification of a novel transcript. Blood 90 (3):1192-1199

83. Cocce MC, Alonso CN, Rossi J, Felice MS, Gitter MR, Gallego MS (2015) A case of pediatric ALL with t(16;21)(p11.2;q22) and FUS-ERG rearrangement. Blood Res 50 (1):55-58. doi:10.5045/br.2015.50.1.55

84. Ichikawa H, Shimizu K, Hayashi Y, Ohki M (1994) An RNA-binding protein gene, TLS/FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res 54 (11):2865-2868

85. Jiang H, Qiu H, Xue Y, Pan J, Wu Y, Zhang J, Zheng J, Wang Q, Liang J, Chen S (2011) Establishment and characterization of a novel acute myeloid leukemia cell line, JIH-4, carrying a t(16;21)(p11.2;q22) and expressing the FUS-ERG fusion. Cancer Genet 204 (4):219-223. doi:10.1016/j.cancergen.2011.02.005

86. Takahashi H, Goto H, Eunabiki T, Fujii H, Yamazaki S, Fujioka K, Ikuta K, Kai S (2001) Expression of two types of E2A-HLF fusion proteins in YCUB-2, a novel cell line established from B-lineage leukemia with t(17;19). Leukemia 15 (6):995-997

87. Hunger SP, Devaraj PE, Foroni L, Secker-Walker LM, Cleary ML (1994) Two types of genomic rearrangements create alternative E2A-HLF fusion proteins in t(17;19)-ALL. Blood 83 (10):2970-2977

88. Panagopoulos I, Micci F, Thorsen J, Haugom L, Tierens A, Ulvmoen A, Heim S (2012) A novel TCF3-HLF fusion transcript in acute lymphoblastic leukemia with a t(17;19)(q22;p13). Cancer Genet 205 (12):669-672. doi:10.1016/j.cancergen.2012.10.004

89. Pui C-H (2006) Childhood leukemias. 2nd edn. Cambridge University Press, Cambridge

90. Steinleitner K, Rampetsreiter P, Koffel R, Ramanathan G, Mannhalter C, Strobl H, Wieser R (2012) EVI1 and MDS1/EVI1 expression during primary human hematopoietic progenitor cell differentiation into various myeloid lineages. Anticancer Res 32 (11):4883-4889

91. Kustikova OS, Schwarzer A, Stahlhut M, Brugman MH, Neumann T, Yang M, Li Z, Schambach A, Heinz N, Gerdes S, Roeder I, Ha TC, Steinemann D, Schlegelberger B, Baum C (2013) Activation of Evi1 inhibits cell cycle progression and differentiation of hematopoietic progenitor cells. Leukemia 27 (5):1127-1138. doi:10.1038/leu.2012.355

92. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, Valk PJ, van der Poel-van de Luytgaarde S, Hack R, Slater R, Smit EM, Beverloo HB, Verhoef G, Verdonck LF, Ossenkoppele GJ, Sonneveld P, de Greef GE, Lowenberg B, Delwel R (2003)

б

High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 101 (3):837-845. doi:10.1182/blood-2002-05-1459

93. Su G, Lian X, Tan D, Tao H, Liu H, Chen S, Yin H, Wu D, Yin B (2015) Aberrant expression of ecotropic viral integration site-1 in acute myeloid leukemia and acute lymphoblastic leukemia. Leuk Lymphoma 56 (2):472-479. doi:10.3109/10428194.2014.924118

94. Russell M, List A, Greenberg P, Woodward S, Glinsmann B, Parganas E, Ihle J, Taetle R (1994) Expression of EVI1 in myelodysplastic syndromes and other hematologic malignancies without 3q26 translocations. Blood 84 (4):1243-1248

95. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, Behm FG, Pui CH, Downing JR, Gilliland DG, Lander ES, Golub TR, Look AT (2002) Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1 (1):75-87

96. Hatano M, Roberts CW, Minden M, Crist WM, Korsmeyer SJ (1991) Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 253 (5015):79-82

97. O'Neil J, Look AT (2007) Mechanisms of transcription factor deregulation in lymphoid cell transformation. Oncogene 26 (47):6838-6849. doi:10.1038/sj.onc.1210766

98. Lichty BD, Ackland-Snow J, Noble L, Kamel-Reid S, Dube ID (1995) Dysregulation of HOX11 by chromosome translocations in T-cell acute lymphoblastic leukemia: a paradigm for homeobox gene involvement in human cancer. Leuk Lymphoma 16 (3-4):209-215. doi:10.3109/10428199509049759

99. Brake RL, Kees UR, Watt PM (2002) A complex containing PBX2 contributes to activation of the proto-oncogene HOX11. Biochem Biophys Res Commun 294 (1):23-34. doi:10.1016/S0006-291X(02)00426-6

Figure caption

Fig.1 Examples on results. (**A**) Electrophoresis of NM-PCR product of cell lines and two subject with MA status. R1 to R8; 8 parallel multiplex reactions. L; 50-1500bp DNA molecular weight marker (CinnaGen Co, Iran). A 690-bp segment of the ubiquitously expressed E2A mRNA is amplified in all the NM-PCR and Split-Out reaction mixtures as an PCR internal positive control. The band related to each rearrangement were indicated by numbers 1 to 6 near the band. In patient no.3, 1&2 indicate the tow rearrangements with closely similar sizes that separated by Split-Out reaction. (**B**) Split-Out result of THP-1 cell line. Multiplex mixture R5 was separated to five individuals PCR for t(4;11)(q21;q23) (R5A), t(11;19)(q23;p13.3) (R5B), t(9;11)(p22;q23) (R5C and R5D) and t(1;11)(q21;q23) (R5E). (**C**) checkup for DNA contamination in RNA mixtures by GAP-PCR protocol. An example of contamination was shown.

Fig.2 (A) MA status were significantly detected in majority of the positive cases. (B) Relationship of act(3q26) with other rearrangements in positive subjects. (C) Age-associated *EVI1* activation in positive subjects.

Fig.3 Nucleotide sequence of novel fusion transcript variant identified in the present study. A; transcript variant of *TLX1* has been predicted in NCBI Reference Sequence as transcript variant X1 observed in case No.11. B and C; two novel fusion variant of t(4;11)(q21;q23) in case No.41. D, E and F; three novel fusion variant of t(6;11)(q27;q23) and t(9;11)(p22;q23) in case No.3. Breakpoint sequence related to the t(11;19)(q23;p13.1) has been previously reported [70], which observed in a novel disease in this study (Case No.41).

Table 1: Aberrant rearrangements investigated by MRT-PCR

Chromosomal Rearrangement	Genes Involved	HGNC Gene Symbols	ENSEMBL Transcript ID	Gene Fusion Region*	PCR Mix No. ‡	PCR Product Size ¥	Positive Control‴	Observations'''
act(3q26.2)	EVI1(3q26.2)	МЕСОМ	ENST00000464456 ENST00000494292		R7C R7C	262 289	RPMI8402 ¹⁴ ¶ RPMI8402 ¹⁴ ¶	MDS ¹⁵ ,AML ¹⁶ ,ALL ¹⁷ ,CML ¹⁸ MDS ¹⁵ ,AML ¹⁶ ,ALL ¹⁷ ,CML ¹⁸
act(10q24)	HOX11(10q24)	TLX1	ENST00000370196		R4D R4D	212	RPMI8402 ¹⁹ ¶	T-ALL ²⁰
del(1p32)	<i>SIL</i> (1p32) <i>TAL1</i> (1p32)	STIL TAL1	ENST00000360380 ENST00000294339	SILex1/TAL1ex1b	R3D	184	RPMI8402 ^{20,21} ¶	T-ALL ^{20,21}
dup(11q23)	MLL(11q23)	KMT2A	ENST00000534358	MLLex7/MLLex2	R2F	184		ALL ³
	<i>MLL</i> (11q23)	KM12A	ENS100000534358	MLLex8/MLLex2 MLLex9/MLLex2	R2F R2F	258 145(390)	PC	AML ²² ,ALL ²³ AML ²²
				MLLex10/MLLex2	R2F	259(504)		AML ²²
				MLLex11/MLLex2 MLLex11[nt51]/MLLex2	R2F R2F	406(651)		AML ²² AMI ²²
inv(16)(p13;q22.1)	CBF(16q22.1)	CBFβ	ENST00000290858	CBFex5/MYH11ex34 (A)	R1A	270	PC,ME-124	AML ²⁴
	MYH11(16p13)	MYH11	ENST00000616439	CBFex5/MYH11ex33 (B)	R1A	483		AML ²⁴
				CBFex5/MYH11ex32 (C) CBFex5/MYH11ex30 (D)	RIA RIB	663 337		AML ²⁴ AMI ²⁴
				CBFex5/MYH11ex29 (E)	R1B	544		AML ²⁴
				CBFex4/MYH11ex34 (F)	R1A	174		AML ²⁴
				CBFex4/MYH11ex30 (G) CBFex4/MYH11ex29 (H)	R1B	241 348		AML ⁴
				CBFex5/MYH11ex32 (I)#	R1A	591		AML ²⁵
(27.11)(.12.1	MIL(11.02)	121 (752 4	ENGT00000524250	CBFex5/MYH11ex33[nt88]+ins7#	R1A	402		AML ²⁶
t(X;11)(q15.1;q25)	MLL(11q23) AFX(Xq13.1)	KM12A FOXO4	ENST00000374259	MLLex8/AFXex1 MLLex9/AFXex1	RIC RIC	344 231(476)		P
				MLLex10/AFXex1	R1C	345(590)	Karpas-45 ^{28,29}	ALL ^{28,29}
+(1.11)(-2122)	MLL(11-22)	KANTO A	ENGT0000524259	MLLex11/AFXex1	R1C	492(737)		P AMMOL ³⁰
t(1;11)(q21;q23)	AFlq(1q23)	MLLT11	ENST00000368921	MLLex8/AF1qex2 MLLex9/AF1qex2#	R5E R5E	400 287(532)		AMMOL ³³ AML ⁹⁹
	1.1.7			MLLex10/AF1qex2	R5E	401(646)		Р
				MLLex11/AF1qex2 MLLex9[pt115]/AF1qex2+ips27#	R5E	548(793) 542		P AMI ³¹
t(1;11)(p32;q23)	MLL(11q23)	KMT2A	ENST00000534358	MLLex8/AF1pex2	R2A	301	TZ-1 ³³ #	ALL ³² ,AMOL ³³ #
	AF1p(1p32)	EPS15	ENST00000371733	MLLex9/AF1pex2	R2A	188(433)		Р
				MLLex10/AF1pex2 MLLex11/4F1pex2	R2A R2A	302(547) 449(694)		P
t(1;19)(q23;p13)	E2A(19p13)	TCF3	ENST0000262965	E2Aex16/PBX1ex3 (I)	R3A	376	PC,697 ^{34,35} ,SUP-B27 ³⁴ #	ALL ³⁵
V0.5X 02 05 1	PBX1(1q23)	PBX1	ENST00000420696	E2Aex16/PBX1ex3+ins27 (Ia)	R3A	403	GUD M036 L 0037	ALL ³⁵
t(2;5)(p23;q35.1)	<i>NPM</i> (5q35.1) <i>ALK</i> (2p23)	NPM1 ALK	ENST00000296930 ENST00000389048	NPMex4/ALKex20	K8D	296	SUP-M2 ³⁰ ,L82 ³⁷	ALCL ³⁰ , 1/B-cell lymphomas ³⁸
t(3;5)(q25.1;q35.1)	NPM(5q35.1)	NPM1	ENST00000296930	NPMex6/MLF1ex2	R8F	276		MDS ³⁹ , AML ³⁹
t(3.21)(a26.2.a22.3)	MLF1(3q25.1)	MLF1 RUNX1	ENST00000619577 ENST00000300305	AMI lex5/MDS1ex2	R4B	446	SKH140	CML-BC ⁴⁰ AML ⁴¹ MDS ⁴²
((3,21)(q20.2,q22.3)	MDS1(3q26.2)	MECOM	ENST00000494292	AML1ex6/MDS1ex2	R4B	638	PCO	$CML-BC^{40}$, AML^{41} , MDS^{42}
t(4;11)(q21;q23)	MLL(11q23)	KMT2A	ENST00000534358	MLLex8/AF4ex4	R5A	317	KOCL45 ⁴³ #	ALL ^{43,44}
	AF4(4q21)	AFF	ENS10000307808	MLLex9/AF4ex4 MLLex10/AF4ex4	R5A R5A	204(449) 318(563)	K54; 11 **	ALL ^{44,46}
				MLLex11/AF4ex4#	R5A	465(710)		ALL ⁴⁵
				MLLex8/AF4ex5	R5A	272	MV-4-11 ⁴⁴	ALL ^{44,46}
				MLLex10/AF4ex5	R5A	273(518)		ALL ALL ^{43,46}
				MLLex11/AF4ex5§	R5A	420(665)		ALL
				MLLex8/AF4ex6# MLLex9/AF4ex6	R5A R5A	185 72(317)		ALL ⁴⁶
				MLLex10/AF4ex6	R5A	186(431)	KOCL-6943#	ALL ^{43,44,46}
t(5,12)(a22,a12)	TEL(12-12)	ETV6	ENET00000206272	MLLex11/AF4ex6§	R5A	333(578)	PC	ALL CMMI 48
u3,12)(q33;p13)	PDGFR(5q33)	PDGFRβ	ENST00000261799	TELex4/PDGFRex11	R6D	321	PCO	CMML ^{48,49} , MDS ⁴⁹
t(5;17)(q35.1;q22)	NPM(5q35.1)	NPM1	ENST00000296930	NPMex4/RARAex2	R8E	165		APL ⁵⁰
t(6.9)(p22.3.034.1)	RARA(17q22)	RARa DFK	ENST00000394081 ENST00000397239	NPMex5+129bp/RARAex2 DFKex9/CANex18	R8E R7A	294 320	FKH-1 ⁵² #	APL ⁵¹ AMI ⁵²
((0,))(p22.5,q54.1)	CAN(9q34.1)	NUP214	ENST00000359428	DEROX) CHIVERIO	R/II	520		TIME
t(6;11)(q27;q23)	MLL(11q23)	KMT2A	ENST00000534358	MLLex7/AF6ex2#	R1D	234	SHI-1 ^{53#}	AML ⁵³
	AF0(0q27)	AFDN	EINS 100000400822	MLLex8/AF6ex2 MLLex9/AF6ex2	R1D	308 195(440)	CTS ⁵⁵ #	AML ² , ALL ²
				MLLex10/AF6ex2	R1D	309(594)		P
t(8.21)(a22.a22.3)	AML1(21a223)	RUNXI	ENST00000300305	MLLex11/AF6ex2§ AML1ex5/FTOex3	R1D R4A	456(741)	PC Kasumi-156 SKNO-157#	AML AMI ⁵⁶
((0,21)(q22,q22.0)	ETO(8q22)	RUNX1T1	ENST00000523629	TIMETOKS/ET OOKS	R H	555		711112
t(9;9)(q34.11;q34.13)	SET(q34.11) CAN(q34.13)	SET NUP214	ENST00000372692 ENST00000359428	SETex7/CANex17# SETex7/CANex18	R7B R7B	552 393	MEGAL ⁵⁸ #,LOUCY ⁵⁸ #	T-ALL ³⁰ AUL ⁵⁹ ,AML ⁶⁰ #,T-ALL ⁶¹ #
((9;11)(p22;q23)	MLL(11q23) AF9(9p22)	MLLT3	ENST00000380338	MLLex8/AF9ex6	R5C R5C	521 208(453)	Mono-Mac-6 ³ .KOPB-26 ⁴³ #	AML AML ⁶⁴
	~r */			MLLex10/AF9ex6	R5C	322(567)	Mono-Mac-6 ³ ,KOPB-26 ⁴³ #	AML ⁶⁴
				MLLex11/AF9ex6§ MLLex7/AF9ex7#	R5C	469(714)		AML AMI ⁶⁵
				MLLex8/AF9ex9	R5D	365		AML ⁶⁶
				MLLex9/AF9ex9	R5D	252(497)		P
				MLLex10/AF9ex9 MLLex11/AF9ex98	R5D R5D	306(611) 513(758)		r AML
				MLLex8/AF9ex10#	R5D	293		AML ⁶⁷

t(9;12)(q34.1;p13)	TEL(12p13)	ETV6	ENST00000396373	TELex4/ABLex2	R6C	366	ALL-VG ⁶⁸ #, PCO	ALL ^{69,70} ,CML ⁷¹ #,T-cell
	<i>ABL</i> (9q34.1)	ABLI	ENST00000318560	TELex5/ABLex2#	R6D	912	ALL-VG ⁶⁸ #	Imphoma ⁷² ALL ⁷⁰ ,AML ⁷⁰ ,CML ⁷¹ ,T-cell
t(9:22)(a34:a11)	BCR(22q11)	BCR	ENST0000305877	BCRex1/ABLex2 (e1a2)	R6A	320	NALM-29 ⁷³ #	ALL ⁷⁴
	ABL(9q34)	ABL1	ENST00000318560	BCRex1/ABLex3 (e1a3)	R6A	146		Р
				BCRex13/ABLex2 (b2a2)	R6B	397	PC,BV-17373#,MOLM-173#	CML ⁷⁴
				BCRex13/ABLex3 (b2a3)	R6B	223	NE - 073#	P
				BCRex14/ABLex2 (b3a2) BCRex14/ABLex3 (b3a3)	R6B R6B	472	K562 ⁷³	CML/*
t(10:11)(p12:q23)	MLL(11g23)	KMT2A	ENST00000534358	MLLex7/AF10ex16	R0D R2C	202	PC	AML ^{75,76}
	AF10(10p12)	MLLT10	ENST00000307729	MLLex8/AF10ex15	R2C	388		AML ^{75,76}
				MLLex9/AF10ex15	R2C	275(520)		Р
				MLLex10/AF10ex15	R2C	389(634)		P
				$\frac{MLLex11}{AF10ex15}$ $\frac{MLLex7}{\Delta F10ex14}$	R2C	550(781) 493		P AMI ³
				MLLex8/AF10ex10	R2D	268		AML ^{75,76}
				MLLex9/AF10ex10	R2D	155(400)		AML ⁷⁶
				MLLex10/AF10ex10	R2D	269(514)		P
				MLLex11/AF10ex10	R2D	416(661)		P
				MLLex8/AF10ex9 MLLex9/AF10ex9	R2D	304 251(496)		AML ⁷⁶
				MLLex10/AF10ex9	R2D	365(610)		P
				MLLex11/AF10ex9	R2D	512(757)		Р
				MLLex8/AF10ex6	R2E	267		AML ⁷⁶
				MLLex9/AF10ex6	R2E	154(399)		P
				MLLex 10/AF10ex6 MLLex 11/AF10ex6	R2E R2E	208(515) 415(660)		P P
t(11;17)(q23;q21)	MLL(11q23)	KMT2A	ENST00000534358	MLLex7/AF17ex11	R2B	281		AML ⁷⁷
	AF17(17q21)	MLLT6	ENST0000621332	MLLex8/AF17ex7-del615#	R2B	839		AML ⁷⁸
				MLLex8/AF17ex8-del615#	R2B	671		AML ⁷⁸
+(11.17)(-22.121)	DL7E(11-02.1)	707016	ENGT00000225052	$\frac{MLLex9[nt/4]/AFT/ex11[nt94]\#}{PL7E_{2}^{2}/PAPA_{2}^{2}}$	R2B	335		AML ⁷⁰
t(11;17)(q25.1;q21)	PLZF(11q23.1) RARA(17q21)	ZBIBIO RARa	ENST00000335953	PLZFex3/RARAex2 PLZFex4/RARAex2	R8A R8A	402		APL ⁷⁹
t(11;19)(q23;p13.1)	MLL(11q23)	KMT2A	ENST00000534358	MLLex8/ELLex2	R1E	330		P
	ELL(19p13.1)	ELL	ENST00000262809	MLLex9/ELLex2	R1E	217(462)	PC	AML ⁸⁰ ,ALL§
				MLLex10/ELLex2	R1E	301(576)		P
				MLLex11/ELLex2 MLLex8/ELLex2 ins120	RIE P1E	448(723)		P
				MLLex9/ELLex2+ins120	R1E	337(582)		AML ⁸⁰
				MLLex10/ELLex2+ins120	R1E	451(696)		AML ⁸⁰
				MLLex11/ELLex2+ins120	R1E	598(845)		P
t(11,10)(a22,a12,2)	$MUL(11_{2}2)$	VMTA	ENET0000524258	MLLex9/ELLex3#	R1E D5D	169	PCO	AML ³¹
u(11,19)(q23,p13.3)	ENL(19p13.3)	MLLT1	ENST00000252674	MLLex9/ENLex2	R5B	73(318)	KOCL-44 ⁴³ .KOCL-51 ⁴³ #	ALL ⁴⁶
	(;)}			MLLex10/ENLex2	R5B	187(432)	KOCL-44 ⁴³ ,KOCL-51 ⁴³ #	ALL ⁴⁶
				MLLex11/ENLex2	R5B	334(579)		Р
t(12;21)(p13;q22.3)	<i>TEL</i> (12p13)	ETV6	ENST00000396373	TELex5/AML1ex3	R3C	298	DE11824	ALL ⁸³
	AMLI(21q22.3)	RUNXI	ENS100000300305	TELex5/AMLIex2 TELex5+ins33/AMLlex2#	R3C R3C	337	KEH ²²	ALL ²⁷
t(15;17)(q22;q21)	PML(15q22)	PML	ENST0000268058	PMLex7+ins110/RARAex2[nt46]#	R8B	544		APL ⁸⁴
	RARA(17q21)	RARa	ENST00000394081	PMLex7/ADAMTS17ex15/RARAex2#	R8B	601		APL ⁸⁵
				PMLex6/RARAex2 (BCR1)	R8B	427	NB-4 ^{86,91} ¶	APL ^{86,5}
				PMLex6+ins29/RARAex2 (BCR2)	R8B	456		APL ³
				PMLex6[nt205]/RARAex2 (BCR2)	R8B	373		APL ⁵
				PMLex6[nt113]/RARAex2 (BCR2)#	R8B	280		APL ⁸⁷
				PMLex6[nt101]/RARAex2 (BCR2)	R8B	269		APL ⁵
				PMLex5/RARAex2#	R8B	168	ND 486m	APL ⁸⁸
				PMLex4/RARAex2 PMLex4/ins58/RARAex2#	R8C	404	NB-4**¶	APL ²² APL ⁸⁹
				PMLex4+ins9/RARAex1[nt413]#	R8C	549		APL ⁹⁰
				PMLex3-del42-ex4/RARAex2#	R8C	422		APL ⁸⁷
				PMLex3/RARAex2 (BCR3)	R8C	393		APL ⁸⁶
t(16,21)(=11,2)(=22,2)	TLS(16+11,2)	FUC	ENET00000254108	PMLex3-del54/RARAex2	R8C D4C	339		APL ³
(10,21)(p11.2;q22.3)	ERG(21a22.3)	ERG	ENST00000234108	TLSex7/ERGex9#	R4C	448		ALL ⁹³
	- ()	-		TLSex6+44bp+ex7/ERGex12 (a)	R4C	318	UTP-L1294	AML ⁹⁴
				TLSex7/ERGex12 (b)	R4C	274	UTP-L12 ⁹⁴ ,JIH-4 ⁹⁵ #	AML ⁹⁴
				TLSex6/ERGex12 (c)	R4C	239	UTP-L12 ⁹⁴	AML ⁹⁴ ,ALL ⁹⁴
				TLSex0/ERGex10 (d) TLSex6/ERGex9 (e)	R4C	413	ru	ALL ³
t(17;19)(q22;p13.3)	E2A(19p13.3)	TCF3	ENST0000262965	E2Aex16/HLFex4+ins137#	R3B	468	YCUB-2 ⁹⁶ #	ALL ⁹⁶
	HLF(17q22)	HLF	ENST00000226067	E2Aex16/HLFex4+ins90#	R3B	421	YCUB-2 ⁹⁶ #	ALL ⁹⁶
				E2Aex16/ins59/HLFex4 (I)	R3B	390	11 AL 0197	ALL ⁹⁷
				$E_{A} ex 16/HLF ex 4$ (1) $F_{A} ex 15/HLF ex 4$ (II)	R3B R3R	331	HAL-01 ⁷⁷ VCUB-2 ⁹⁶ #	ALL ⁷⁷ ALL ⁹⁷
				$E_{2Aex13/HLFex4}$	R3B	48	1COD-2 #	ALL ⁹⁸

Abbreviations: HGNC, HUGO Gene Nomenclature Committee; No, number; act, activation; del, deletion; dup, duplication; inv, inversion; t, translocation; p, short chromosome arm; q, long chromosome arm; ex, exon; ins, insertion; nt, nucleotid; bp, base pair; BCR1/2/3, breakpoint cluster region 1/2/3; PC, positive control obtained from patient material; PCO, positive control obtained from patients who are not member of this study; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; CML, chronic myeloid

leukemia; BC, blast crisis; AUL, acute undifferentiated leukemia; CMML, chronic myelomonocytic leukemia; MDS, myelodysplastic syndrome; AMOL, acute monocytic leukemia; AMMOL, acute myelomonocytic leukemia; P, possible fusion variant in terms of theoretical.

Symbols: *Letters and numbers in brackets and parentheses respectively indicates alternative breakpoints and name of fusion variants. ‡R1 to R8 indicate multiplex reaction number, and A to F indicate split-out reaction with individual primer pairs. ¥Number in the parentheses suggested the size of PCR product when co-amplified from the *MLL* exon 7 primer, just for *MLL*ex7/*AF9*ex7 is related to the co-amplification from the *AF9* exon 11 primer. "Related references shown on upper right corner. †This variant of *HOX11* transcript has been predicted in NCBI Reference Sequence as transcript variant X1 and not described on ENSEMBL. #Novel fusion variant, cell line and observation in other study. ¶Available cell lines employed as positive control. \$Novel fusion variant and disease observation in this study.

Table 2: Primers used in the GAP-PCR and NM-PCR

Group	Gene	ENSEMBL Transcript ID	Forward Primer (5'>3')	Reverse Primer (5'>3')	PCR Mix No.	Product Length	Tm (°C)
А							
	GAPDH	ENST0000229239.9	CATGGCCTCCAAGGAGTAAG	GGTTGAGCACAGGGTACTTTA	-	219bp	57
В							
	AF4	ENST0000307808	-	GTTTTTGGTTTTGGGTTACAGAACT	R5A	-	58
	SET	ENST0000372692	CACCGAAATCAAATGGAAATCTG	-	R7B	-	56

Group A: primer pair used for GAP-PCR protocol. Forward primer annealed to the exon9 and reverse primer placed on 3' UTR of GAPDH transcript.

Group B: optimized primers for NM-PCR. Reverse primer of *AF4* is for second step of NM-PCR primer set. Forward primer of *SET* is related to first step of NM-PCR primer set. Other primers were used as provided sequence in the past [3].

Table 3: Preanalytic features and MRT-PCR results of 53 subjects with hematological malignancies

Group	Case No.*	Status	Sex	Age (year)	Diagnosis	IBC (%)	Abnormality	Related Gene or Fusion Variant	Additional details
A	1 *		м	40	TALL	11	+(10-24)	Actionation of HOV11	NT
	1	present	IVI	40	I-ALL	11	act(10q24) act(3q26)	Activation of EVI1	New case
	7*	present	F	32	Pre-B-ALL	18	t(1;19)(q23;p13) act(3q26)	<i>E2A</i> ex16/ <i>PBX1</i> ex3 (I) Activation of <i>EVI1</i>	New case
	11*	present	F	12	ALL	21	act(10q24) act(3q26)	Activation of <i>HOX11</i> Activation of <i>EVI1</i>	New case
	20	present	М	26	Pre B-ALL	4	act(3q26)	Activation of EVII	New case
	39*	present	M	6	T-ALL	17	t(16:21)(p11.2:q22.3)	TLSex6/ERGex10 (d)	New case
		I					act(10q24) act(3q26)	Activation of <i>HOX11</i> Activation of <i>FVI1</i>	
	41*	present	М	7	ALL	24	t(11;19)(q23;p13.1)	MLLex9/ELLex2	New case
		-					t(4;11)(q21;q23)	MLLex10/AF4ex6	
							t(4;11)(q21;q23)	MLLex11/AF4ex6	
							t(4;11)(q21;q23)	MLLex11/AF4ex5	
	10			4	D D III		act(3q26)	Activation of EVII	NY
	43	present	M	4	Pre B-ALL	-	t(4;11)(q21;q23)	MLLex11/AF4ex6	New case
	4/*	present	М	5	Pre B-ALL	13	$t(6;11)(q^2/;q^{23})$ $t(12;21)(r^{12};q^{23})$	MLLex8/AF0ex2	New case
							1(12,21)(p13,q22.5)	Activation of FVII	
	/8*	present	F	2	Pre B-ALI	12	t(12.21)(p13.a22.3)	TELev5/AMI lev3	New case
	40	present	1.	2	TIC D-ALL	12	t(12,21)(p13,q22.3) t(4.11)(q21.q23)	MLI = x11/AF4 = x4	new case
							act(3a26)	Activation of EVI1	
	6	remission	М	4	Pre B-ALL	-	Negative		The initial diagnosis was performed by
	Ĩ			-			8		Immunophenotyping. During sampling,
									patient was received chemotherapy.
	12	present	М	23	T-ALL	-	Negative		New case
	14	present	F	15	ALL	-	Negative		New case
	44	present	F	4	Pre B-ALL	-	Negative		New case
	45	present	F	8	Pre B-ALL	-	Negative		New case
	51	remission	М	5	Pre B-ALL	-	ND		The initial diagnosis was performed by
									Immunophenotyping. During sampling,
D									patient was received chemotherapy.
В	2*	procent	F	16	AMI	21	t(6,11)(a27,a22)	MILON11/AE60x2	New enco
	5	present	г	10	AML	51	t(0;11)(q27;q25) t(11:19)(q23:p13.1)	MLLex11/AF0ex2 MLLex9/FLLex2	new case
							t(9:11)(p22:q23)	MLLex11/AF9ex9	
							t(9;11)(p22;q23)	MLLex11/AF9ex6	
							act(3q26)	Activation of <i>EVI1</i>	
							t(15;17)(q22;q21)	PMLex3/RARAex2	
	5*	present	М	56	AML-M1	6	dup(11q23)	MLLex9/MLLex2	New case
							act(3q26)	Activation of EVI1	
	8	present	М	43	AML with	7	act(3q26)	Activation of EVI1	New case
				=0	Pancytopenia	10			
	9	present	M	70	AML-M5	10	act(3q26)	Activation of EVII	New case
	10	remission	М	30	AML-M3	/	act(3q26)	Activation of EVII	The initial analysis showed AML-M3 with $t(15,17)(-22,-21)$ and two streams
									with $t(15;17)(q22;q21)$ and treatment was started by ATPA Partial remission
									was achieved after 6 months
	18*	present	М	24	AML-M3	35	act(3g26)	Activation of EVI1	New case
		r				20	t(15;17)(q22;q21)	PMLex3/RARAex2	
	19	present	М	41	AML	6	act(3q26)	Activation of EVI1	New case
	21	present	М	19	AML-M2 with	-	t(8;21)(q22;q22)	AML1ex5/ETOex3	New case
		_			Pancytopenia				
	22*	present	М	45	AML-M3	18	act(3q26)	Activation of EVI1	New case
							t(15;17)(q22;q21)	PMLex3/RARAex2	
	24	present	М	29	AML-M4Eo	-	inv(16)(p13.11;q22.1)	<i>CBF</i> ex5/ <i>MYH11</i> ex34 (A)	New case
-	25*		м	10			10x(16)(p13.11;q22.1)	CBFex5/MYHITex33+ins/	NT.
	25*	present	M	18	AML-M3 with	-	t(10;11)(p12;q23) t(15;17)(a22;a21)	MLLex //AF IUex16	New case
	26*	procont	м	25		26	t(15,17)(q22,q21)	FMLex0/RARAex2 (BCR1) MLex8/AE0ex10	New enco
	20.	present	IVI	55	AWIL-WIS	50	act(3a26)	Activation of EVII	new case
			1				t(15:17)(a22)a21)	PMLex6+ins25/RARAex2	
	27	present	М	28	AML-M4Eo	1 -	inv(16)(n13,11)a22,1)	CBFex5/MYH11ex34 (A)	New case
	28*	remission	M	32	AML-M3	7	act(3a26)	Activation of <i>EVI1</i>	The initial analysis showed AML-M3
		10111001011		52		,	t(15;17)(q22;q21)	PMLex6[nt205]/RARAex2	with $t(15;17)(q22;q21)$ and treatment
			1						was started by ATRA. Partial remission
			1						was achieved after 8 months.
	29	remission	Μ	29	AML-M3	15	act(3q26)	Activation of EVI1	The initial analysis showed AML-M3
									with t(15;17)(q22;q21) and treatment

									was started by ATRA. Partial Remission
	30*	present	F	32	AML-M3	-	t(8;21)(q22;q22)	AML1ex5/ETOex3	New case
		•					t(15;17)(q22;q21)	PMLex6/RARAex2	
	31	relapse	М	35	AML-M2	-	t(8;21)(q22;q22)	AML1ex5/ETOex3	The initial analysis showed AML-M3
									with $t(15;1/)(q22;q21)$ and treatment was started by ATRA Relapsed after 4
									months with t(8:21)(g22:g22) and
									diagnosed as AML-M2.
	35	present	М	15	AML-M3	-	t(15;17)(q22;q21)	PMLex3/RARAex2	New case
	4	present	М	29	AML	-	Negative		New case
	13	present	M	44	AML	-	Negative		New case
	15	remission	м	45	AML	-	Negative		I he initial diagnosis was performed by
									patient was received chemotherapy.
	17	relapse	F	21	AML-M4	-	Negative		The initial diagnosis was performed by
		_					-		Immunophenotyping. Partial remission
									was achieved after 6 months. Then,
	22	romission	м	69	AML M2		Nagatiya		Relapsed after 2 months.
	32	Tennission	IVI	00	AML-MIS	-	Negative		with $t(15:17)(q22:q21)$ and treatment
									was started by ATRA. Complete
									remission was achieved after 7 months.
	36	present	М	79	AML	-	Negative		New case
	38	remission	М	35	AML-M3	-	Negative		The initial analysis showed AML-M3
									with $t(15;17)(q22;q21)$ and treatment was started by ATRA. Complete
									remission was achieved after 5 months.
	46	remission	М	37	AML-M3	-	Negative		The initial analysis showed AML-M3
									with t(15;17)(q22;q21) and treatment
									was started by ATRA. Complete
C									remission was achieved after 5 months.
C	2*	present	F	43	CML	11	t(9:22)(a34:a11)	BCRex13/ABLex2	New case
	-	present	-		CIIIL		act(3q26)	Activation of EVII	
	16*	relapse	F	41	CML	29	t(9;22)(q34;q11)	BCRex13/ABLex2	The initial analysis showed CML with
							act(3q26)	Activation of EVI1	t(9;22)(q34;q11). Treatment was started
									by Imatinib. Relapsed after / months.
									ABL1 kinase domain.
	23	present	М	53	CML-BC	-	t(9;22)(q34;q11)	BCRex13/ABLex2	New case
	33	relapse	Μ	34	CML	-	t(9;22)(q34;q11)	BCRex14/ABLex2	The initial analysis showed CML with
									t(9;22)(q34;q11). Treatment was started
									by Imatinib. Relapsed after 6 months. A
									acid change was detected in ABL1
									kinase domain.
	40*	present	F	36	CML	10	t(9;22)(q34;q11)	BCRex13/ABLex2	New case
-	10.4		-	2.6	D C U		act(3q26)	Activation of EVI1	X
	42*	present	F	26	Pro-CML	6	t(9;22)(q34;q11)	BCRex13/ABLex2	New case
	49	present	F	49	CML-BC	-	t(9.22)(a34.a11)	RCRex13/ARLex2	New case
	52	present	M	92	CML	16	act(3q26)	Activation of EVI1	New case
	53*	present	F	62	CML	17	t(9;22)(q34;q11)	BCRex13/ABLex2	New case
			L				act(3q26)	Activation of EVI1	
	37	remission	Μ	25	CML	-	Negative		The initial analysis showed CML with
									t(9;22)(q34;q11). Treatment was started
									achieved after 4 months.
	50	remission	М	28	CML	-	Negative		The initial analysis showed CML with
							Ç		t(9;22)(q34;q11). Treatment was started
									by Imatinib. Complete remission was
									achieved after 6 months.
	54*	nresent	м	47	HES	- 28	dup(11a23)	MILey 10/MILey?	New case
	54	present	141	+/	111.5	20	act(3q26)	Activation of EVII	
	34	present	М	16	LL	-	Negative		New case

Group A, patients diagnosed as ALL subtypes. Group B, patients diagnosed as AML subtypes. Group C, patients diagnosed as CML subtypes. Group D, patients with other hematological malignancies.

Abbreviations: IBC, immature blast cell; M, male; F, female. Pre B-ALL, precursor B-cell acute lymphoblastic leukemia; Pro-CML, progenitor cell-chronic myeloid leukemia; HES, hypereosinophilic syndrome; LL, Lymphoblastic Lymphoma; ND, not done; ATRA, all trans-retinoic acid. Other abbreviations are similar to Table 1.

Symbols: *Subjects with MA situation.

Table 4: The CBC test results in subjects with novel fusion variant.

Case No.	IBC (%)	Hem (g/dL)	Platelet /µL	WBC /µL	Neut (%)	Mono (%)	Eos (%)	Lym (%)
3*	31	6.9	24×10^{3}	16.21×10^{3}	88.2	8.6	-	2.1
11*	21	11.1	26×10 ³	3.94×10 ³	23.1	2.3	1.3	72.8
41*	24	11.6	66×10^{3}	3.77×10^{3}	11.2	11.1	0.3	76.9

Abbreviation: Hem, hemoglobin; WBC, white blood cell; Neut, neutrophil cell; Mono, monocyte cell; Eos, eosinophilia cell; Lym, Lymphocyte cell. Other abbreviations and Symbols are similar to Table 1 and Table 3.

#1 #2 #3 #4 #5 #5 #7 #8 L 10

2: t(9;22)(q34;q11) BCRex14/ABL1ex2 (b3a2)

1: act(10q24) 2: act(3q26.2)

1: t(15;17)(q22;q21) PMLex4/RARAex2 2: t(15;17)(q22;q21) PMLex6/RARAex2 (BCR1)

NALM-6 1: act(10q24)

1: act(10q24)

1: t(12;21)(p13;q22.3) ETV6ex5/RUNX1ex2 2: act(10q24) 3: act(3q26.2)

1: del(1p32) STILex1/TALIex1b 2: act(10q24) 3: act(3q26.2)

1: t(9;11)(p22;q23) KMT2Agx8/MLIT3ex6

Split-Out for THP-1

Patient No.3

1: t(6;11)(q27;q23) KMT2Aex11/AFDNex2 2: t(11;19)(q23;p13.1) KM72Aex9/ELLex2 3: t(9;11)(p22;q23) KMT2Aex11/MLLT3ex9 4: t(9;11)(p22;q23) KMT2Aex11/MLLT3ex6 5: act(3q26) 6: t(15;17)(q22;q21) PMLex3/RARAex2 (BCR3)

Patient No.41 1: t(11;19)(q23;p13.1) KM72Aex9/ELLex2 2: t(4;11)(q21;q23) KMTZAex11/AFF1ex5 3: t(4;11)(q21;q23) KMT2Aex11/AFF1ex6 4: t(4;11)(q21;q23) KMT2Aex10/AFF1ex6 5: act(3q26)

